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I. Introduction. Confinement of fast ions is important to have efficient heating of fusion plas-
mas in the form of NBI and of alpha particles. It is known that magnetic islands may from
in low-order rational magnetic surfaces in toroidal fusion devices which modify the magnetic
geometry and should affect particle transport. It has been shown that rational surfaces may act
as transport barriers for suprathermal electrons in electron cyclotron resonance heating (ECRH)
experiments, [1] and thermal ions in stellarators such as TJ-II. Likewise, the fast ions resulting
from neutral beam injection (NBI) interact with the magnetic islands altering their transport but
the usual neoclassical transport analysis based on nested magnetic surfaces is not valid. Here
we study the transport of a population of test particles in the presence of a magnetic island con-
figuration produced by collisions with a Maxwellian plasma background consisting of electrons
and a single species of ions, which are described by stochastic operators [3]. Particle orbits are
obtained by numerically solving Langevin equations and transport coefficients are calculated
with the Monte Carlo method from an ensemble of ions [2].

The equations are solved with a fourth order Runge-Kutta algorithm with a random choice of
the sign in the Lorentz collision operators at each time step. Additionally a radial electric field
was included, which modifies the transport of particles. The diffusion coefficient was calculated
from the standard expression D = ﬁvff:] (xj(t) — xj(0))* where x;() is the position of a

particle at time 7.

I1. Slab model The magnetic field model including islands is given by
B(x,y,2) =2x Vy+B.Z; y = yplogcosh(x)+ y; cos(ky)

where Y represents the poloidal flux and y; < y the strength of the island perturbation. The
phase space variables used to describe the particle motion are (r,v>, A = v||/v) in terms of which

the guiding center equations are
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where v and vp are the usual parallel and drift velocities respectively. A constant electric field
can also be included as E = EpX.
These equations can be numerically integrated to obtain single particle trajectories. The effect

of collisions is introduced through pitch-angle and energy scattering operators [3]
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One effect of collisions is to produce transitions between trapped and passing particles. An
initial population of Ny particles starting at a fixed radius (x coordinate) is followed in time to
determine the ensuing particle distribution. Figure 1 shows the ion distribution for Ny = 1000
with initial kinetic energy taken from a Maxwellian of mean 1 keV located near the separatrix
of an m = 2 island configuration and followed for 3 ms (about 5 collision times), within the
range —a/2 < x < a/2,—ma <y < ma,—mR < z < R with periodic boundary conditions in y
and z which represent the poloidal and toroidal coordinates, respectively.

From Fig. la it can be

seen that few particles tres-
pass the islands region, dis-

playing a barrier effect on

ylem)

transport. The same simu-

lation was carried out but

with an electric field corre-
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Figure 1: Final distribution with ¢ = 0 (a) and ¢ = 8kV (b). sponding to a potential of 8

kV, it can be seen from Fig.
1b that particles are better confined in this case. From the variance 6 of the ion distribution
as function of time the diffusion coefficient can be computed as D = ¢%/2¢. It is found that

D = 3600cm? /s and D = 3.76cm? /s without and with E-field, respectively.
II1. Tokamak model The model equilibrium normalized magnetic field used is [6]
B(r,0,8)=1—¢&cos6 —g,cosn(l —cos ) (2)

where 11 =16 — j{; for a tokamak we take &, = 0. The magnetic island is represented by a per-
turbation to the equations 6B =V x aB; o = oy, sin(m6 —n{), (s = ¢’ /q) which produces
a magnetic island at y,, with g(y,) = m/n, of width A =4,/ /5.



45" EPS Conference on Plasma Physics P4.1105

The phase-space variables are (¥, 0, , p)), with y, = Bor? /2 the poloidal flux, 8, { poloidal/toroidal

angles and p| = v /B. The guiding center equations are [4]
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From Monte Carlo simulations, the local particle

diffusion coefficient D(v) was calculated for thermal

ions starting at r = a/2 in a circular tokamak with- z*
g
out islands, using the parameters By =2T,R =2m,a = /

20cm,q =4,T, = T; = 1keV. As a benchmark they are

Plateau
Pfirsch—Schliiter

compared with the neoclassical analytic expression for

0° 101 02 10%

a tokamak [7], giving a good agreement (Fig. 2). Figure 2: Neoclassical diffusion benchmark.
Figure 3 shows trajectory Poincaré plots for 20 keV

ions in a single m/n = 2/1 island tokamak field. In Fig. 3a secondary m = 3 and m = 5 islands

appear in the ion motion for a perturbation amplitude of 6 x 10*. In Fig. 3b the amplitude is

8 x 10*, which produces surface destruction. This leads to stochastic transport for a population

of ions reaching these regions.
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Figure 3: Poincaré plots of particle trajectories for amplitude (a) 6 x 10%, (b) 8 x 10*.

The distribution at 1 ms of 2000, 20 keV ions started at r = 0.38a with pitch-angle A = 1 is

shown in Fig.4 for the two island amplitudes. It can be seen that there is a stochastic transport
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threshold between 6 x 10* and 8 x 10%.

The effect still appears when
pitch-angle scattering is included. It
is noticed that stochastic transport is

a dominant feature over collisions.

IV. Stellarator model. The mag-
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Figure 4: Final distribution with ¢ = 0 (a) and ¢ = 8kV (b). netic field for a stellarator with

enhanced confinement is given by
Eq. (2) with g, = L [6]. Just as in the tokamak case, the equations of motion are (3) and colli-
sions are introduced through (1). In this case orbits have the additional effect of helical trapping.
Fig. 5 shows the particle and momentum dispersions. Ions were started at » = 0.5a in the per-
turbed fields of a circular tokamak (top) and stellarator (bottom). Collisions in the plateau
regime were included. The amplitude was chosen to be 8 x 104, so there is surface destruc-
tion in the Poincaré plots of the particle trajectories. The diffusion coefficients computed from
the slope do not have a significant change in the stellarator case with respect to the tokamak

with values D = 6 x 10%cm?/s.
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V. Conclusions. In slab geometry, islands 20] — g

=== tokamak

act as transport barriers. A radial electric s

field helps the confinement. For tokamak,
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there is destruction of surfaces in the par-

ticle Poincaré plots at a perturbation am-

plitude threshold for stochastic transport. . tms) )
Figure 5: Particle and momentum dispersion for tokamak
Stochastic transport is a dominant effect 4 i

over collisions. No significant change in

transport was found in stellarators with respect to the tokamak case for the model chosen.
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