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I. Introduction. Confinement of fast ions is important to have efficient heating of fusion plas-

mas in the form of NBI and of alpha particles. It is known that magnetic islands may from

in low-order rational magnetic surfaces in toroidal fusion devices which modify the magnetic

geometry and should affect particle transport. It has been shown that rational surfaces may act

as transport barriers for suprathermal electrons in electron cyclotron resonance heating (ECRH)

experiments, [1] and thermal ions in stellarators such as TJ-II. Likewise, the fast ions resulting

from neutral beam injection (NBI) interact with the magnetic islands altering their transport but

the usual neoclassical transport analysis based on nested magnetic surfaces is not valid. Here

we study the transport of a population of test particles in the presence of a magnetic island con-

figuration produced by collisions with a Maxwellian plasma background consisting of electrons

and a single species of ions, which are described by stochastic operators [3]. Particle orbits are

obtained by numerically solving Langevin equations and transport coefficients are calculated

with the Monte Carlo method from an ensemble of ions [2].

The equations are solved with a fourth order Runge-Kutta algorithm with a random choice of

the sign in the Lorentz collision operators at each time step. Additionally a radial electric field

was included, which modifies the transport of particles. The diffusion coefficient was calculated

from the standard expression D = 1
2tN ∑

N
j=1(x j(t)− x j(0))2 where x j(t) is the position of a

particle at time t.

II. Slab model The magnetic field model including islands is given by

B(x,y,z) = ẑ×∇ψ +Bzẑ; ψ = ψ0 logcosh(x)+ψ1 cos(ky)

where ψ0 represents the poloidal flux and ψ1 < ψ0 the strength of the island perturbation. The

phase space variables used to describe the particle motion are (r,v2,λ = v‖/v) in terms of which

the guiding center equations are

dr
dt

= v‖+vD

dv2

dt
= 2(v‖+vD) ·E

dλ

dt
=

1−λ 2

2

[
2

vv‖
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v
v‖B

(v‖+vD) ·∇B
]
,
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where v‖ and vD are the usual parallel and drift velocities respectively. A constant electric field

can also be included as E = E0x̂.

These equations can be numerically integrated to obtain single particle trajectories. The effect

of collisions is introduced through pitch-angle and energy scattering operators [3]

λn = λ0−∑
b

νd(b)λ0τ±
[
∑
b

νd(b)(1−λ
2
0 )

]1/2

τ
1/2

En = E0−2∑
b

νE(b)
{

E0−
x(b)
π1/2

exp [−x2(b)]
Ψ[x(b)]

T (b)
}

τ±2
[
∑
b

ν(b)T (b)E0

]1/2

τ
1/2 (1)

One effect of collisions is to produce transitions between trapped and passing particles. An

initial population of N0 particles starting at a fixed radius (x coordinate) is followed in time to

determine the ensuing particle distribution. Figure 1 shows the ion distribution for N0 = 1000

with initial kinetic energy taken from a Maxwellian of mean 1 keV located near the separatrix

of an m = 2 island configuration and followed for 3 ms (about 5 collision times), within the

range −a/2 < x < a/2,−πa < y < πa,−πR < z < πR with periodic boundary conditions in y

and z which represent the poloidal and toroidal coordinates, respectively.

(a) (b)
Figure 1: Final distribution with φ = 0 (a) and φ = 8kV (b).

From Fig. 1a it can be

seen that few particles tres-

pass the islands region, dis-

playing a barrier effect on

transport. The same simu-

lation was carried out but

with an electric field corre-

sponding to a potential of 8

kV, it can be seen from Fig.

1b that particles are better confined in this case. From the variance σ2 of the ion distribution

as function of time the diffusion coefficient can be computed as D = σ2/2t. It is found that

D = 3600cm2/s and D = 3.76cm2/s without and with E-field, respectively.

III. Tokamak model The model equilibrium normalized magnetic field used is [6]

B(r,θ ,ζ ) = 1− εt cosθ − εh cosη(1− cosθ) (2)

where η = lθ − jζ ; for a tokamak we take εh = 0. The magnetic island is represented by a per-

turbation to the equations δB = ∇×αB; α = αmn sin(mθ −nζ ), (s = q′/q) which produces

a magnetic island at ψp with q(ψp) = m/n, of width ∆ = 4
√

αmn/s.
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The phase-space variables are (ψp,θ ,ζ ,ρ‖), with ψp =B0r2/2 the poloidal flux, θ ,ζ poloidal/toroidal

angles and ρ‖ = v‖/B. The guiding center equations are [4]

ψ̇p =−
g
D

[
(µ +ρ

2
‖B)∂θ B+∂θ Φ

]
+

I
D

[
(µ +ρ

2
‖B)∂ζ B+∂ζ Φ

]
+

gρ‖B2

D
∂θ α−

Iρ‖B2

D
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ρ‖B2

D
(1−ρcg′−g∂ψpα)+

g
D
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2
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D
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D
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2
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Figure 2: Neoclassical diffusion benchmark.

From Monte Carlo simulations, the local particle

diffusion coefficient D(ν) was calculated for thermal

ions starting at r = a/2 in a circular tokamak with-

out islands, using the parameters B0 = 2T,R = 2m,a =

20cm,q = 4,Te = Ti = 1keV . As a benchmark they are

compared with the neoclassical analytic expression for

a tokamak [7], giving a good agreement (Fig. 2).

Figure 3 shows trajectory Poincaré plots for 20 keV

ions in a single m/n = 2/1 island tokamak field. In Fig. 3a secondary m = 3 and m = 5 islands

appear in the ion motion for a perturbation amplitude of 6× 104. In Fig. 3b the amplitude is

8×104, which produces surface destruction. This leads to stochastic transport for a population

of ions reaching these regions.

(a) (b)

Figure 3: Poincaré plots of particle trajectories for amplitude (a) 6×104, (b) 8×104.

The distribution at 1 ms of 2000, 20 keV ions started at r = 0.38a with pitch-angle λ = 1 is

shown in Fig.4 for the two island amplitudes. It can be seen that there is a stochastic transport
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threshold between 6×104 and 8×104.

(a) (b)
Figure 4: Final distribution with φ = 0 (a) and φ = 8kV (b).

The effect still appears when

pitch-angle scattering is included. It

is noticed that stochastic transport is

a dominant feature over collisions.

IV. Stellarator model. The mag-

netic field for a stellarator with

enhanced confinement is given by

Eq. (2) with εh = rl [6]. Just as in the tokamak case, the equations of motion are (3) and colli-

sions are introduced through (1). In this case orbits have the additional effect of helical trapping.

Fig. 5 shows the particle and momentum dispersions. Ions were started at r = 0.5a in the per-

turbed fields of a circular tokamak (top) and stellarator (bottom). Collisions in the plateau

regime were included. The amplitude was chosen to be 8× 104, so there is surface destruc-

tion in the Poincaré plots of the particle trajectories. The diffusion coefficients computed from

the slope do not have a significant change in the stellarator case with respect to the tokamak

with values D = 6×102cm2/s.

Figure 5: Particle and momentum dispersion for tokamak

and stellarator.

V. Conclusions. In slab geometry, islands

act as transport barriers. A radial electric

field helps the confinement. For tokamak,

there is destruction of surfaces in the par-

ticle Poincaré plots at a perturbation am-

plitude threshold for stochastic transport.

Stochastic transport is a dominant effect

over collisions. No significant change in

transport was found in stellarators with respect to the tokamak case for the model chosen.

Acknowledgements. This work was partially supported by project DGAPA-UNAM IN112118.

References
[1] MA Ochando, F Medina, et al. Plasma Phys. Control. Fusion, 45, 221 (2003).

[2] Andrés de Bustos Molina. PhD thesis, Universidad Complutense de Madrid (2013).

[3] A. H. Boozer and G. Kuo-Petravic. Phys. Fluids, 24, 851 (1981).

[4] Roscoe B White. The theory of toroidally confined plasmas. World Scientific Publishing Company (2013).

[5] R.B. White and M.S. Chance. Phys. Fluids, 27, 2455 (1984).

[6] H.E. Mynick, T.K. Chu, and A.H. Boozer. Phys. Rev. Lett, 48, 322 (1982).

[7] F.L. Hinton and R.D. Hazeltine. Rev. Mod. Phys., 48, 239 (1976).

45th EPS Conference on Plasma Physics P4.1105


