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Introduction

With the rapid development of high-power and high-intensity lasers in the world, the maxi-
mum laser power and intensity will reach O(10 PW - 10> W /cm?). Extreme Light Infrastruc-
ture - Nuclear Physics (ELI-NP; Figure 1) is one of the research centers which has the two
arms of the 10PW lasers to create such extremely high-intensity light and the electron linear
accelerator (LINAC) up to 720 MeV to create gamma photons of O(~ 19.5 MeV) via the in-
verse Compton scattering [1]. Radiation reaction (RR), the back-reaction acting on a radiating
electron, becomes important in laser-plasma experiments by these high-intensity lasers. There
is its typical prediction that more than 80% of the electron’s energy is emitted via the RR effect
in head-on collision of a high-intensity laser and a highly energetic electron [2]. That work was
performed in purely classical dynamics, however in the recent studies, the importance to include
its quantum correction depending on laser intensities has been suggested by several authors
[3, 4]. It is regarded as a new regime of physics by high-intensity lasers. For the investigation
of this new regime, we plan to examine the effects of RR by the head-on collision between the
high-energy electrons (> 600MeV) extracting from GBS-LINAC and the high-intensity laser
(>10>' W/cm?) at ELI-NP [5].
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Figure 1: ELI-NP; 10 PW laser facility.



45" EPS Conference on Plasma Physics P4.2026

@1Hz

Racks
electronics

Scattered e-beam ‘

Figure 2: Schematic design of RR experiment at ELI-NP (right panel) and Gamma Polari-

e-beam

Calorimeter (GPC) for radiation detection (left panel).

RR experimental project at ELI-NP

The RR effect in relativistic regime of an electron has been treated in classical electrodynam-
ics in laser-plasma science — the Lorentz-Abraham-Dirac (LAD) equation [6] as the original
model of RR, the Landau-Lifshitz (LL) [7], Sokolov models [8] as approximations of the LAD
equation, etc. Recently, the RR models including its quantum correction have been proposed
[3, 4] by employing the cross-section of non-linear Compton scattering [9, 10]. Their essential
difference appears in the radiation energy formula below [11]:

dWQED _ q(x) 5 dWClassical

dt dt M

The factor g()) is the quantumness of RR depending on y o< (electronenergy) x (laserintensity)'/2,

namely, it is the running coupling for the radiation process on laser intensities.

The basic idea of our RR experiment is on the confirmation of ¢()x), namely, the detection
of radiation correlating with an energy of a scattered electron after the interaction of RR [1, 5].
Figure 2 shows that schematic design of its early stage experiment. We propose the head-on
collision between a 1PW laser beam [12] and an electron bunch (with an electron energy of
600 MeV) from GBS-LINAC [13]. The 1 PW laser will be operated by the following character-
istics: wavelength = 0.82 um, pulse duration = 22 fsec, spot size = 5.6 um and laser intensity
=2 x 10> W/cm? with repetation rate of 1Hz [14]. In this setup, we expect to detect the energy
difference of O(100MeV) of a scattered electron between ones in quantum and classical mod-

els. At the same time, the radiation spectrum has to be observed. We have developed Gamma
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Polari-Calorimeter (GPC) for the detection of radiation [14, 15].

Stochastic mechanics for RR

Can we find the non-perturbative regime in QED? In fact, the appearance of non-perturbative
effects in QED is not apparent in mathematical physics since its coupling constant is samall
enough. Therefore, we have investigated a non-standard expression of quantum dynamics for it
— relativistic stochastic mechanics by a Brownian motion, equivalent to the Klein-Gordon equa-
tion. It imposes a similar dynamics to the LAD equation of the classical RR model as we see it
below. In this model, the quantum uncertainty appears as the randomness of a quanta’s trajec-
tory: dox! = ”//i“ dt + (randomness). This kinematics is coupled with the following dynamics

including RR [16]:
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The each variables are defined in Ref.[16]. Where, —eg"" (£(7,®)) 7y (%(7,®)) denotes the
interaction of RR. The readers may find the similarity to the LAD eqution:

dvt
moﬁ = —e(Feﬁl(v +FL”XD)VV (5)

RV _ moTy [d3x* dx¥  dPxV dx* ©)
LAD = o2 | dt3 dt  dtd dr

Equations (2-4) are the quantization of the LAD equation (5-6). Ehrenfest’s theorem of Eqgs.(2-
4) imposes
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where, F is the RR field in the LL model. The existence probability &2 (Q2'¢) at its average
trajectory { ()¢ }rcr is replaced by g( ) when an external laser field is a plane wave. This agrees
with the numerical results in Ref.[4]. Equation (7) is useful to estimate RR with its quantumness

in laser-plasma similations.
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