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Electrostatic collisionless shocks appear in various laboratory and space plasmas; and they

are also used in laser-plasma acceleration schemes to produce monoenergetic ion beams [1]. We

investigate how the the existence and properties of low Mach-number electrostatic collisionless

shocks are affected when the electron distribution function is flat in the trapped region, as is

often the case due to an adiabatic trapping process. Besides corresponding modifications to the

electron distribution our semi-analytical approach follows that of Ref. [2], which showed good

correspondence to simulations with the Eulerian Vlasov-Maxwell solver of Gkeyll [3].

By assuming that the flattening of the electron distribution function is strictly linked to the

minimum of the downstream potential oscillations we find solutions at higher Mach numbers

than would be allowed by simple Maxwell-Boltzmann electrons, and more interestingly, we

find regions of parameter space with multiple steady state electrostatic shock solutions.

Model We adopt a semi-analytical kinetic approach similar to Ref. [2], to describe the vicinity

of the shock front in one-dimensional, steady state, electrostatic shocks. The sound speed cs =√
ZiT̂e/m̂i is defined with the charge number Zj and mass m̂i of the bulk ion species, and the

electron temperature T̂e. Subscripts e, i, z, refer to electrons, bulk ions, and impurities, and j is

a generic ion species index. A physical quantity X̂ is normalized as X = X̂/X̄ , where X̄ is a

species-independent normalizing quantity. In particular T̄ = T̂i is the ion temperature, n̄ is the

bulk ion density of the unperturbed upstream plasma, φ̄ = T̂i/e, v̄ =
√
T̂i/m̂p, with the proton

mass m̂p, and x̄=

√
T̂iε0/(e2n̄), with the elementary charge e and the vacuum permittivity ε0.

In the upstream region (x> 0) the potential φ drops from φ(x= 0) = φmax to φ(x→∞) = 0.

In the downstream region (x < 0) it oscillates between φmin and φmax. In the shock-frame, the

far upstream ions have a velocity −V̂ , corresponding to a Mach numberM = V̂ /cs = O(1),

where vi =

√
T̂i/m̂i is the thermal speed of the main ions, and we assume T̂e� T̂i→ V̂ � vi.

The distribution function fj is constant along the contours of total energymjv
2/2+Zjφ. The

assumption of fj to be a Maxwellian far upstream determines fj in the passing and reflected

regions of the phase space, while trapped and co-passing regions are assumed to be empty. Thus,
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the ion densities are given by

n±j (x) =

∫ ±v0
−∞

fjdv ≡
nj√

2πTj/mj

∫ ±v0
−∞

dv exp

−
(√

v2 + 2Zjφ(x)/mj−V
)2

2Tj/mj

 , (1)

where the + and − signs are relevant for the upstream and downstream, respectively; the speed

at the phase space separatrices is v0(x) =
√

[φmax−φ(x)]2Zj/mj , and nj without argument is

the density of the far upstream unperturbed plasma. (ni = 1 = Ti due to our normalization.)

Adiabatic trapping of electrons tend to produce a flat trapped electron distribution [4]. At

which energy, φtr, this flattening happens depends on aspects of the shock that are outside

the scope of our simple model: the far downstream potential variation and the time history

of the shock. Here we assume the electron distribution to be constant for φ−mev
2/2 ≥ φtr,

and Maxwell-Boltzmann for φ−mev
2/2≤ φtr, and take the plausible choice φtr = φmin. This

electron model (denoted by AD) corresponds to an electron density

ne = ne1

[
2

√
φ−φtr
πTe

exp

(
φtr
Te

)
+ Erfc

(√
φ−φtr
Te

)
exp

(
φ

Te

)]
, (2)

where ne1 =
∑

jZjn
+
j (+∞) represents the electron density far upstream, where φ= 0 and the

plasma is quasineutral, and according to (1), n+j (+∞) =
nj
2

[
1 + 2Erf

(
Ṽj

)
+ Erf

(√
Ψj− Ṽj

)]
,

where Ṽj = V/
√

2Tj/mj , Ψj = Zjφmax/Tj .

Finally, the potential is calculated from Poisson’s equation d2φ(x)
dx2

= ne(x)−
∑

jZjnj(x) ≡

−ρ(x). The expressions for the densities depend parametrically on φmin and φmax, which can

be found employing Sagdeev potentials, Φ+ =
∫ φ
0 dφ

′ρ+, and Φ− =
∫ φ
φmax

dφ′ρ−. Solving the

system {Φ+(φ= φmax,φmin,φmax) = 0, Φ−(φ= φmin,φmin,φmax) = 0} gives φmin and φmax.

Results In previous studies considering Maxwell-Boltzmann (MB) electrons it was found that

above the threshold Te≈ 15 there is a finite window of Mach numbers where solutions exist, and

this window increases with Te. For a given Te, φmax and φmin monotonically increases withM,

as illustrated for Te = 200 in Fig. 1a with red solid and dotted curves, respectively. However,

when the trapped electron distribution function is assumed flat as explained previously, we

find that above Te ≈ 30, the downstream potential extrema become multivalued functions of

M: there is a range of M with more than one solutions represented by the green/blue/black

segments in Fig. 1a. Below this range only the smallest φmax solution (black) exists. Depending

on the parameters, the highest φmax solution of the AD model (green)—that is usually very

close to the MB result (red)—can extend above this region, or alternatively, as in this example,

terminate somewhere inside the multivalued region.
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(a) (b)

Figure 1: (a) φmax (solid) and φmin (dotted) as functions of M for Te = 200. Red: MB electrons,

green/blue/black: AD electron model roots with decreasing φmax. (b) boundaries of the regions of ex-

istence for shock solutions. Solid: highest φmax root and MB model, dashed: theoretical lower limit,

dash-dotted: multiple solutions exist, dotted: φtr = 0 (maximum effect of adiabatic electron trapping).

The boundaries of existence of various solution types are shown in Fig. 1b. The lower red

curve is the limit of existence of shock solutions, that coincides with a more accurate expression

for the sound speed accounting for finite ion pressure (dashed curve). The upper red curve

corresponds to the upper limit of existence of the high φmax solution. At this threshold the

amplitude of the downstream oscillation vanishes (and so do the trapped region of ions), thus

the MB model predicts the same upper limit of existence. The boundary of the region where

more than one solutions are allowed is shown with dash-dotted line. The upper boundary of

the multivalued region surpasses that of the existence of the high φmax root at around Te = 85,

which means that steady state shock solutions exist at a higher Mach number than allowed by

the MB model (which is the case in Fig. 1a).

The multivalued nature of φmax with Mach number is a consequence of that both decreasing

φtr (as for the upper dash-dotted curve in 1b) and decreasing the downstream oscillation of the

potential (as for the upper solid curve) allows higherM solutions. As long as φtr and φmin are

strictly linked, these are competing requirements, but if the requirement φtr = φmin is relaxed,

and large trapped regions and small oscillation are allowed in the same time, significantly higher

values ofM can be achieved: As an extreme reference case we show the boundary of existence

for solutions at φtr = 0 with dotted line in Fig. 1b, appearing at significantly higher Mach

number than allowed by the AD model.

The potential structures φ(x) of various solutions at Te = 200 are shown in Fig. 2. Solutions

of the AD model having the same φmax = 155 are shown in Fig. 2a, with the same color coding

for the various roots as in Fig. 1a. The “upper” root (green), which exhibits a small amplitude
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Figure 2: φ(x) for various shock solutions at Te = 200. (a) Solutions of the AD model having the same

φmax = 155. (b) Highest Mach numbers solutions at this Te. Green: upper rootM= 1.44, blue: middle

rootM= 1.58, pink: φtr = 0,M= 2.75.

oscillation, is very close to the MB electron solution (not shown), and it has M = 1.35. The

“middle” root (blue) hasM = 1.45 and its φmin is well separated from 0 and φmax, while the

“lower” root (black) has 1.56 and its φmin is almost 0: the solution is close to a solitary wave. It

is interesting to observe this difference in the downstream behavior for the same shock size. This

could mean that a shock initialization scheme might be very sensitive as to which type of shock

is produced, which would be of high interest since the three different shocks in Fig. 1a have very

different ion refection properties (a factor 106 between the green and the black solutions). The

highestM solutions for Te = 200 are shown in Fig. 2b. The downstream oscillation amplitude

vanishes for the upper root (green), while it is significant for the degenerate middle/lower root

(blue). The φtr = 0 case allows a significantly higher φmax andM= 2.75 (pink).

Conclusions By assuming a flattening of the trapped electron distribution function with a

trapping energy strictly linked to the minimum of the downstream oscillations in 1D laminar

electrostatic shocks, we find that above an electron-to-ion temperature ratio of Te = 30 multiple

solutions are possible for the same temperature ratio and Mach numberM. The root that has

the highest shock potential φmax is close to the result with Maxwell-Boltzmann (MB) electrons,

while the two lower φmax roots exhibit strong downstream oscillations in φ. Above Te = 85 the

upperM limit of shock existence is extended above the MB result due to these roots.
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