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ABSTRACT: The effects of the magnetic topology on the axisymmetric divertor are
investigated. Two distinct magnetic topologies are studied: the open-unbounded and the
closed-compact. Open-unbounded magnetic topology is represented by the simple map and
the closed-compact topology by the symmetric quartic map. Identical magnetic perturbation is
applied and field lines are given a constant artificial radial spiraling velocity. Preliminary
results of the study are presented. How the confinement time and the loss time of the field
lines for unperturbed and perturbed axisymmetric divertors are calculated and compared for
both topologies.

Single-null divertor tokamaks can have two distinct topologies — the open and
unbounded topology or the closed and compact topology. For both of these topologies, the
unperturbed magnetic surfaces inside the separatrix are closed. For the open and unbounded
topology, the magnetic surfaces outside the separatrix are open. For the closed and compact
topology, the separatrix is in the shape of figure eight, and the magnetic surfaces outside the
separatrix are also closed, Figs 1(a-b). The simple map (SM) [1] is the simplest symplectic
map that generically represents the open-unbounded topology; and the symmetric quartic map
(SQM) [2] is the simplest symplectic map that generically represents the closed-compact
topology. SQM’s generating function contains three positive parameters in its coefficients
which control the height and width of ideal separatrix surface and poloidal magnetic flux
inside ideal separatrix. In this paper, these maps are used to study the effects of topology on
the axisymmetric divertor. Natural canonical coordinates [3] are used for both maps. The
parameters in the SQM are chosen so that: (1) the unperturbed poloidal fluxes inside the

separatrix is the same for both topologies, ¥, (y,6)=1/6.; (2) the widths and the heights of the
separatrix surfaces are approximately the same for both topologies, Fig. 1(c). The generating

function in NCC for the SM is given by v, (y,6)= l//t+(2\/2/3) w>'?sin’(6), and for the SQM by

t

7, (. O=a(O)y +b(O)y; *+c(O)y,+d, where a(6)=(128/243)sin'(6), b(6)=(32/27)sin*(6),

c(0y=(32/27)sin*(O)+(27/64)cos*(6), and d=—1/6. y; is toroidal flux and @ is poloidal angle.

The equilibrium axisymmetric magnetic geometries from these generating functions are
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shown in Figs. 1(a,b). Total poloidal flux is v, (v,,0,0)=v, (v,,0)+v,(v,,0,¢) wherey,

is the magnetic perturbation, and ¢ is the toroidal angle. Magnetic perturbation is given by

W, (Wi, 0, )=, m) Onn( Wr)cOS(m 6—n @) where m and n are poloidal and toroidal mode numbers
of the Fourier modes. Poloidal fluxy , is the Hamiltonian function for the trajectories of

magnetic field lines. The symplectic map equations are calculated from the canonical
transformation ™" =y —kdy, (W 0,08, V= +koy (w8 ,07) oy

and ¢/"V=

@+k. j is the iteration number. k is the step-size of the symplectic integration; here
k=2m/360 for both maps. The perturbation is chosen to have mode numbers (m,n)=(3,1)+(4,1)
with amplitude &=5x10" in both maps. The radial dependence of the perturbation is
ignored. The outermost confining surface for the SM is through x=0, y;s=0.833; and for the
SQM is x=0 and y;gs=0.756. The widths of the stochastic layers near the X-points are
w/rsgp=0.17 for the SM and w/rsgp=0.29 for the SQM. The width of the SQM is about 1.7
times that of the SM for the same perturbation. The phase portraits of the SM and SQM with

these perturbations in the poloidal plane =0 are shown in Fig. 2.
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Fig. 1: Topologies of axisymmetric divertor in the SM and the SQM. (a) Open and unbounded topology
represented by SM, (b) Closed and bounded topology represented by SQM, (c) Comparison of the separatrices of
the SM and SQM.
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Fig. 2: Phase Portraits of SM (a,b) and SQM (c,d) and their close-up views when 5=5x10~. In both cases, these
figures depict the outermost confining surfaces, islands, closed confining surfaces and magnetic turnstiles.
A field line is started on the outermost confining surface in the plane ¢p=0 in the SM

and advanced for 10,000 toroidal circuits and every tenth point in the ¢=0 plane is chosen as
an initial condition. The same procedure is used to choose initial conditions on the outermost
confining surface in the SQM. In each case, the 1,000 lines are advanced for 10,000 toroidal

circuits. The filed lines are given a radial velocity of D per radian of toroidal advance in the
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y-space. After each iteration of the field line, y; is changed to w;+kD. D is varied from 1x10°
6 9x107, 8x107, ...,1x102. This causes the field lines to spiral out radially. Radial spiraling
of field lines is used to simulate the escape of field lines through magnetic turnstiles. The
stochastic region outside the outermost confining surface is made up of islands, chaos, and
cantori. The field lines escape by threading through the gaps or holes in cantori also called
magnetic turnstiles. In the vicinity of one cantorus, there is an infinite Markov tree of cantori,
which slow the escape of magnetic field lines and cause the lines to linger or stick in that
region for many toroidal circuits. An infinite Markov tree of cantori means that there are an
infinite number of cantori with which the trajectory interacts and that the trajectory can be
assumed to interact with the various cantori in a random (Markovian) manner [4-5]. This is an
extremely complicated process. The walls are placed in planes though the X-points and are
orthogonal to the lines joining the O-points to the X-points in both topologies. The strike
points are calculated from the respective continuous analogs of the maps if the line strikes the
wall during an iteration of the map; otherwise if the line strikes the wall during the radial
spiraling, it is easy to calculate the strike points analytically. In this way, the footprints on
walls are calculated for different values of the spiraling velocity D. Depending on the values
of the spiraling velocity, the footprints for the closed and bounded topology (SQM) form
different structures with sharp boundaries and interior structures. Fig. 3 shows the three
typical structures that occur. These are shown in Fig. 3 for the values D=3x10", D=2x10",
and D=1x10. For the open and unbounded topology (SM) similar structures develop with
different ranges of the spiraling velocity and the scalings in the x-direction. In future, we plan

to do a detailed study of the sizes, shapes, and structures of footprints for both topologies.
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Fig. 3: The footprint for the SQM when (a) D=3x10* and (b) 5=2x107. (¢) &=1x102.
During the 10,000 toroidal circuits’ journey of the field lines with radial spiraling

through the magnetic turnstiles, the first line strikes the wall after a toroidal advance of ¢
radians. ¢ is full confinement time because all lines are confined during this time. For both

topologies, Fig. 4 shows the scalings of ¢ with respect to D when the perturbation amplitude
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=0 and & =5x107. For unperturbed axisymmetric divertor, ¢, scales as 1/D, and for highly
perturbed axisymmetric divertor, ¢ scales as D to the power -’. This is true for both

topologies.
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Figs. 4: Scaling of ¢, as a function of radial velocity D for SM and SQM: (a) when 50, and (b) when 5=5x10~.
In both cases ¢, scales as 1/D when =0 and the square root of radial velocity \D when §=5x107.

The loss time @ oss is defined as the time it takes the number of confined lines to drop
to 1/e of the starting number of lines. For unperturbed axisymmetric divertor, ¢ oss scales as
D to the power -1/10 for the open topology (SM) and -1/8 for the closed topology (SQM). For
axisymmetric divertor with high perturbation, 6=5x107, the loss time @Loss scales as D5 for

open topology (SM) and as D' for closed topology (SQM), Fig. 5.
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Fig. 5: The loss time ¢, ¢ssas a function of D for SM and SQM (a) when 6=0, and (b) when 5=5x107. When 6=0,
¢Loss scales as D to the power -1/10 the SM and -1/8 for the SQM. For high perturbation, §=5x107, the loss time
@Loss scales as D™ for the SM and as D™ for the SQM
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