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ABSTRACT: The effects of the magnetic topology on the axisymmetric divertor are 

investigated. Two distinct magnetic topologies are studied: the open-unbounded and the 

closed-compact. Open-unbounded magnetic topology is represented by the simple map and 

the closed-compact topology by the symmetric quartic map. Identical magnetic perturbation is 

applied and field lines are given a constant artificial radial spiraling velocity. Preliminary 

results of the study are presented. How the confinement time and the loss time of the field 

lines for unperturbed and perturbed axisymmetric divertors are calculated and compared for 

both topologies.  

 Single-null divertor tokamaks can have two distinct topologies – the open and 

unbounded topology or the closed and compact topology. For both of these topologies, the 

unperturbed magnetic surfaces inside the separatrix are closed. For the open and unbounded 

topology, the magnetic surfaces outside the separatrix are open. For the closed and compact 

topology, the separatrix is in the shape of figure eight, and the magnetic surfaces outside the 

separatrix are also closed, Figs 1(a-b). The simple map (SM) [1] is the simplest symplectic 

map that generically represents the open-unbounded topology; and the symmetric quartic map 

(SQM) [2] is the simplest symplectic map that generically represents the closed-compact 

topology. SQM’s generating function contains three positive parameters in its coefficients 

which control the height and width of ideal separatrix surface and poloidal magnetic flux 

inside ideal separatrix. In this paper, these maps are used to study the effects of topology on 

the axisymmetric divertor. Natural canonical coordinates [3] are used for both maps. The 

parameters in the SQM are chosen so that: (1) the unperturbed poloidal fluxes inside the 

separatrix is the same for both topologies, pψ (ψt,θ)=1/6.; (2) the widths and the heights of the 

separatrix surfaces are approximately the same for both topologies, Fig. 1(c). The generating 

function in NCC for the SM is given by pψ (ψt,θ)=ψt+(2√2/3) 3/ 2
tψ sin3(θ), and for the SQM by 

pψ (ψt,θ)=a(θ) 2
tψ +b(θ) 3/ 2

tψ +c(θ) tψ +d, where a(θ)=(128/243)sin4(θ), b(θ)=(32/27)sin2(θ), 

c(θ)=(32/27)sin2(θ)+(27/64)cos2(θ), and d=−1/6. ψt  is toroidal flux and θ is poloidal angle. 

The equilibrium axisymmetric magnetic geometries from these generating functions are 
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shown in Figs. 1(a,b). Total poloidal flux is ( ) ( ) ( ), , , , ,p t p t p tψ ψ θ ϕ ψ ψ θ ψ ψ θ ϕ= +  where pψ  

is the magnetic perturbation, and ϕ  is the toroidal angle. Magnetic perturbation is given by 

pψ (ψt,θ,ϕ)=Σ(m,.n)δmn(ψt)cos(mθ−nϕ) where m and n are poloidal and toroidal mode numbers 

of the Fourier modes. Poloidal flux pψ  is the Hamiltonian function for the trajectories of 

magnetic field lines. The symplectic map equations are calculated from the canonical 

transformation ( 1) ( )j j
t tψ ψ+ = −k∂ψp( ( 1)j

tψ + ,θ(j),ϕ(j))/∂θ(j), θ(j+1)=θ(j)+k∂ψp( ( 1)j
tψ + ,θ(j),ϕ(j))/ ( 1)j

tψ +∂ , 

and ϕ(j+1)=ϕ(j)+k. j is the iteration number. k is the step-size of the symplectic integration; here 

k=2π/360 for both maps. The perturbation is chosen to have mode numbers (m,n)=(3,1)+(4,1) 

with amplitude 35 10δ −= ×  in both maps. The radial dependence of the perturbation is 

ignored. The outermost confining surface for the SM is through x=0,  yLGS=0.833; and for the 

SQM is  x=0 and yLGS=0.756. The widths of the stochastic layers near the X-points are 

w/rSEP≈0.17 for the SM and w/rSEP≈0.29 for the SQM. The width of the SQM is about 1.7 

times that of the SM for the same perturbation. The phase portraits of the SM and SQM with 

these perturbations in the poloidal plane φ=0 are shown in Fig. 2. 

   
Fig. 1: Topologies of axisymmetric divertor in the SM and the SQM. (a) Open and unbounded topology 
represented by SM, (b) Closed and bounded topology represented by SQM, (c) Comparison of the separatrices of 
the SM and SQM. 

    
Fig. 2: Phase Portraits of SM (a,b) and SQM (c,d) and their close-up views when δ=5×10-3.  In both cases, these 
figures depict the outermost confining surfaces, islands, closed confining surfaces and magnetic turnstiles. 

A field line is started on the outermost confining surface in the plane φ=0 in the SM 

and advanced for 10,000 toroidal circuits and every tenth point in the φ=0 plane is chosen as 

an initial condition. The same procedure is used to choose initial conditions on the outermost 

confining surface in the SQM. In each case, the 1,000 lines are advanced for 10,000 toroidal 

circuits. The filed lines are given a radial velocity of D per radian of toroidal advance in the 
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ψt-space. After each iteration of the field line, ψt  is changed to ψt+kD. D is varied from 1×10-

6, 9×10-5, 8×10-5, …,1×10-2. This causes the field lines to spiral out radially. Radial spiraling 

of field lines is used to simulate the escape of field lines through magnetic turnstiles. The 

stochastic region outside the outermost confining surface is made up of islands, chaos, and 

cantori. The field lines escape by threading through the gaps or holes in cantori also called 

magnetic turnstiles. In the vicinity of one cantorus, there is an infinite Markov tree of cantori, 

which slow the escape of magnetic field lines and cause the lines to linger or stick in that 

region for many toroidal circuits. An infinite Markov tree of cantori means that there are an 

infinite number of cantori with which the trajectory interacts and that the trajectory can be 

assumed to interact with the various cantori in a random (Markovian) manner [4-5]. This is an 

extremely complicated process. The walls are placed in planes though the X-points and are 

orthogonal to the lines joining the O-points to the X-points in both topologies. The strike 

points are calculated from the respective continuous analogs of the maps if the line strikes the 

wall during an iteration of the map; otherwise if the line strikes the wall during the radial 

spiraling, it is easy to calculate the strike points analytically. In this way, the footprints on 

walls are calculated for different values of the spiraling velocity D. Depending on the values 

of the spiraling velocity, the footprints for the closed and bounded topology (SQM) form 

different structures with sharp boundaries and interior structures. Fig. 3 shows the three 

typical structures that occur. These are shown in Fig. 3 for the values D=3×10-4, D=2×10-3, 

and D=1×10-2. For the open and unbounded topology (SM) similar structures develop with 

different ranges of the spiraling velocity and the scalings in the x-direction. In future, we plan 

to do a detailed study of the sizes, shapes, and structures of footprints for both topologies. 

Fig. 3: The footprint for the SQM when (a) D=3×10-4 and (b) δ=2×10-3. (c) δ=1×10-2. 
During the 10,000 toroidal circuits’ journey of the field lines with radial spiraling 

through the magnetic turnstiles, the first line strikes the wall after a toroidal advance of ϕ0 

radians. φ0 is full confinement time because all lines are confined during this time. For both 

topologies, Fig. 4 shows the scalings of ϕ0 with respect to D when the perturbation amplitude 
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δ=0 and δ =5×10-3. For unperturbed axisymmetric divertor, φ0 scales as 1/D, and for highly 

perturbed axisymmetric divertor, φ0 scales as D to the power -½. This is true for both 

topologies. 

  
Figs. 4: Scaling of ϕ0 as a function of radial velocity D for SM and SQM: (a) when δ=0, and (b) when δ=5×10-3. 
In both cases ϕ0 scales as 1/D when δ=0 and the square root of radial velocity √D when δ=5×10-3.  

The loss time ϕLOSS is defined as the time it takes the number of confined lines to drop 

to 1/e of the starting number of lines. For unperturbed axisymmetric divertor, φLOSS scales as 

D to the power -1/10 for the open topology (SM) and -1/8 for the closed topology (SQM). For 

axisymmetric divertor with high perturbation, δ=5×10-3, the loss time φLOSS scales as D-2/5 for 

open topology (SM) and as D-1/2 for closed topology (SQM), Fig. 5.  

  
Fig. 5: The loss time φLOSS as a function of D for SM and SQM (a) when δ=0, and (b) when δ=5×10-3. When δ=0,  
φLOSS scales as D to the power -1/10 the SM and -1/8 for the SQM. For high perturbation, δ=5×10-3, the loss time 
φLOSS scales as D-2/5 for the SM and as D-1/2 for the SQM  
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