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Introduction. The current development of nuclear fusion devices and planning the experiments
on them is unimaginable without mathematical modeling. Hundreds of numerical codes have been
developed and successfully used for modeling the most substantial processes in plasma. These
programs were written at different times by different research teams, thus they are not quite well
suited for integration into a single software system. Hence there exists an essential problem to
create an integrated environment for tokamak design and subsequent experiment support. This
software system should unite several numerical codes to model the whole life cycle of the tokamak.
We have been working on such a system, and this paper describes its current state.

Requirements. The description of requirements to the integrated software system should start
from the concept of “discharge scenario”. It is the sequence of the following phases: breakdown,
increase of the current, separatrix formation (for the devices with divertors), quasi-stationary phase
and shutdown. To support the plasma heating experiments all the listed phases have to be
numerically modeled. During all the discharge phases one should take into account the possibility
of disruption. To prevent the disruption the plasma shape and location has to be thoroughly
controlled. This problem leads to the necessity to simulate the diagnostic and control systems. Thus
the minimum experiment support module set includes:

1. the codes for evaluation the MHD equilibrium and evolution of plasma, its stability and

energy and particle balance;

2. simulators of diagnostic, plasma control and magnetic systems of the device.

These codes have to be embedded into an integral software environment (ISE) with a uniform
interface and uniform and (semi-)automatic data exchange system.

Structure. The requirements from the previous section define the set of numerical codes to
include into the ISE [1-9]. The system is currently divided into informational part (hosted at
plasma-fusion.ru) and functional part (hosted at nfusion.cs.msu.ru). The latter has the client-server
architecture. The server application is currently run on a midrange computer, whereas the client
application can be run on PCs, laptops and mobile devices. The server part of the ISE:

1. performs the client authorization (data and computational resources access control);

2. executes and interacts with the computational modules;

3. performs the input/output data transformation between the particular module and ISE-wide

data formats.
The client part is responsible for drawing the graphical user interface (including graphs, tables and
images), interaction with it and data exchange with the server.

The server part of the ISE currently uses the Apache HTTP-server spawning scripts written
in the Python programming language. The scripts execute the computational modules which are
written in different languages (C, C++, Fortran etc.) and compiled into binary executables. The
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client application uses solely web-technologies: the static part of graphical user interface (GUI) is
written in HTML and CSS, the interaction and network data exchange logic is implemented in
JavaScript. The client-server interaction is done over HTTP; the main data format is XML.

The separation of the ISE into two parts has several advantages.

1. The authors of modules don't have to distribute them in source code; instead, the source
code is stored only on developers' machines and on the server. Moreover, the users don't
have direct access even to the executables and can invoke them only through specific API
commands.

2. The users don't have to be concerned about any software environment setup; it all suffices to
a modern web-browser. This argument is even more convincing if the heterogeneity of the
numerical codes is taken into account: compilation of most of them requires quite specific
environment and set of libraries.

3. It allows for almost unlimited scalability: the current midrange server can be seamlessly
replaced with a cluster or even a supercomputer.

Several examples of client applications views are presented in Fig. 1 (MHD equilibria code), Fig. 2
(plasma evolution computation code) and Fig. 3 (reconstruction of plasma boundary code).

New module addition. Currently the addition of new modules into the ISE demands a bit of
creativity and sometimes significant effort. The reason is aforementioned heterogeneity of
programming languages, data formats and GUI libraries used in original program. Despite that,
there are some general recipe of the module addition.

1. The original program is transformed into “ISE-friendly” one, i.e. a console application with
unified input and output data formats. The data is usually read from and written to files
passed in command line arguments.

2. The server part is extended with new classes and functions. It usually suffices to
implementation of an interface with commands of form “set input data”, “run the module”
and “get output data”.

3. The client application is extended with the new module specific parts of GUI and with the
logic of interaction with the server.

During the ISE development we understood that significant part of the code can be moved to
separate libraries and reused. The creation of these libraries substantially simplified the second and
third stages of the the system extension. But the adaption of the original program for the ISE (first
stage) still remains the most demanding and unautomated.

Automatic data exchange. One of the fundamental task emerging during the development of a
integrated system similar to described in this work is organizing data exchange between the
computational modules. As we have already mentioned, because of their different origin the
modules' input/output data formats differ dramatically. The typical manifestation of the problem is
the necessity to transfer the output of one module as input to another one. If the ISE consists of
small number of modules or all of them comply to the same standard, the problem may not be
obvious. But as the number of modules and their diversity grow the difficulties become explicit.

The only possible solution is to have a single “omniscient” format that can store all the data
produced and consumed by all the codes of the ISE. Indeed, unless one has such a universal format,
the only way to solve the data exchange problem is to write a transformation tool for each pair of
modules (i.e. number of tools is proportional to n’, where n is the number of modules). It's
absolutely infeasible for a large ISE especially when the transformation process is only semi-
automatic (because of the difference in input information necessary for different modules). On the
contrary, having one universal data format requires writing only 2n transformation tools, at the
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same time stimulating the developers of new numerical codes to use this format.

The main requirements for the universal data format are flexibility and extensibility, which
implies it has to be hierarchical (e.g., it should be possible to store entries with the same name if
they correspond to distinct modules). On the other hand, there are some concepts common to the
domain and they must correspond to unique entries in the format. In the case of tokamak devices
the examples of such concepts are: the number of poloidal field coils, their location, size and
number of turns; the geometry and material of the first wall; the number of probes, their type,
location and precision; the full plasma current, its beta, inductance etc.

Conclusion. The integrated software environment consists of:
computational modules modeling processes in plasma;
applications allowing remote multi-user access and work with these modules;
means of data exchange between the modules;

e

informational resource.

The proposed resource is open for public use. Despite the system's narrow focus, its basic principles
can be applied for the development of virtual analogues of other complex systems.

This work was supported by RFBR grants No. 17-07-00544-a, 17-07-00883-a.
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Fig. 1. Interface of Tokameq module (MHD equilibria). The double-null magnetic configuration of the
T-15MD tokamak at the time moment t=2.5s. |, = 1.85 MA, Rpiges = 1.51 m, a=0.64 m, k = 1.746, 5, =0.18
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Fig. 2. Interface of TokScen module (plasma evolution). The magnetic configuration of the KTM tokamak at
the time moment t=0.165 s. |, = 0.375 MA, Rpiges = 0.945 m, a=0.41 m, k = 1.256, 5, = 0.4.
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Fig.3. Interface of RPB module (reconstruction of plasma boundary from magnetic measurements).
Reconstruction of the separatrix in the T-15MD tokamak. Time moment t=0.76 s. Measurements error 1 %, 44
two-component magnetic sensors . Blue and red lines — exact and reconstructed separatrix.



