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Abstract
The concept of Lagrangian Coherent Structures (LCS) has been introduced by G. Haller in
the context of transport processes in complex fluid flows [1]. LCS are a generalization of the
dynamical structures observed in autonomous and periodic systems to temporally aperiodic
flows. They separate the flow domain into macro-regions inside which fast mixing phenomena
take place. Over the finite time span which characterizes the LCS these macro-regions do not
exchange fluid elements and thus act as transport barriers. In two recent articles [2, 3], we have
applied this conceptual framework to the study of particle transport in a magnetized plasma by
referring to a simplified model that uses magnetic field lines as a proxy for particle trajectories
and that allows us to consider explicitly a magnetic configuration evolving in time on timescales
comparable to the particle transit time through the configuration.

Lagrangian Coherent Structures as maximal repulsion-attraction material lines

Consider a dynamical system in 2D phase space x = (x,y) with flow map ¢; (x0) = x(t,,xo)-
Two neighbouring points xy and xo + dx¢ evolve into x and x + dx under the linearized map
ox = Vq);o 0xp. Consider a curve % = {xo = r(s)} and at each point xy € ¥ define the unit tan-
gent and normal vectors eg and ng. In the interval [ty,?] the system dynamics advects Y into ¥,
X0 € % into x; € %, the tangent vector eg into e, = V@3 (xo) eo / [eo Cy, (x0) eo] 1/2 "and the normal
vector ng into n, = (V(p;O)Tno / [noC =" (x0) no]'/%. Here T stands for transposed and C/ (xo) =
(V(p;O)T V¢, is the Cauchy-Green strain tensor which describes the deformation of an arbitrar-
ily small circle of initial conditions (i.c.), centered in xo and C~!(xy) = C(xo) (time interval
and &

marks are suppressed unless explicitly needed). Let & be its two eigenvectors with

max min

positive eigenvalues A4, and A,;,. The curves with tangent vector along &, . and, respectively,

min
& max are called strain lines of the Cauchy-Green tensor. The repulsion ratio p; (xo,no) is de-

fined (see Ref.[4, 5]) as the ratio at which points initially near xo € Yy, increase their distance
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from the curve [t,,1]: p,’o (x0,n0) =ny Vq);o (x0) no. = [no C ' (xo0) no]’l/2 = [, C(x0) ny] 12 Anal-
ogously the contraction rate L;O (xo) is proportional to the growth in time of the tangent vector
L(xq,e0) = [eo C(x0) eo] 1/2 A (hyperbolic) LCS over a finite time interval [to,t0 + T] is defined
as a material line along which the repulsion rate is pointwise maximal. This leads to the follow-
ing definitions: a material line such that at each point:  Apin < Amax,  Amax > 1, €0 =& s
& nax - VAmax = 0 is called a repulsive Weak Lagrangian Coherent Structure (WLCS). A WLCS
which satisfies the additional condition &, -V*Auax - &, .. < 01is called a repulsive Lagrangian
Coherent Structure. Attractive LCS are defined as repulsive LCS of the backward time dynam-
ics. In the case of a Hamiltonian dynamical system with one degree of freedom, such as that
which describes magnetic field lines at a fixed time (see e.g., [6]), we have Ayin Apax = 1.
Magnetic field configuration

Following the study of multiple helicity magnetic reconnection in Ref.[7] we write

B =Boe,+Vy(x,y,z,t) xe;, with y(x,y,z,t) =0.19cos(x)+ W (x,t) cos (k1yy +ki;z) +
Un(x,t) cos (kayy + kp.z) in the domain [—Ly,Ly| X [—Ly,Ly] x [-L;,L;] with Ly = &, L, = 2m,
L, = 167 with k1, = kyy, = 27/L, and k;; = 0 while k», = 27/L.. Periodicity is assumed in all
three directions. The initial perturbations, ¥ (x,0) and y»(x,0), are localized at the resonant
surfaces x; = 0 and x; = 0.71 respectively. At each fixed physical time ¢ the magnetic flux
function y(x,y,z,t) plays the role of the Hamiltonian for the magnetic field lines with x and
y canonical variables and z the magnetic Hamiltonian time (MH —¢). The field line equations
become dx/dz = —dy/dy and dy/dz = dy/dx. Different “helicities” k. /k, are needed to make
the Hamiltonian non integrable, i.e., to generate a chaotic magnetic configuration.

In the linear phase two independent island chains are formed at their resonant surfaces: as they
expand and start to interact the dynamics of the magnetic configuration becomes nonlinear,
higher order modes (mostly with the same initial helicities) are generated and regions where
field lines are stochastic are formed and spread as reconnection evolves [7]. We will consider
the normalized physical time (NP —¢) interval = 415 — 425 in which chaos, initially developed
only on a local scale (at t = 415), starts to spread on a global scale (atr = 425).

First we consider the dynamical system obtained by taking a snapshot at a given NP —t where
the flux function y(x,y,z,# =) is the Hamiltonian and z is the MH —¢. Since the configuration
is periodic in z we adopt the Poincaré map technique and compare it with the LCS approach.
In addition since y(x,y,z,t =7) = y(x,—y, —z,t =1) attractive LCSs are mirror images of the
repulsive LCSs with respect to y = 0.

Subsequently, in order to account for the magnetic configuration change during the particle

transit time we adopt a simplified model where the particle gyromotion and drifts are neglected
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and the particles dynamics is only included through their (constant) streaming velocity V along
the guide field By. This allows us to describe LCSs in a time nonperiodic dynamical system and
to identify LCSs that depend explicitly on the different particle velocities. Thus we introduce
a family of nonautonomous dynamical systems characterized by a different velocity V, with
Hamiltonian yy (x,y,2) = w(x,y,z,t = (2—2,)/V). Here V > 0 is assumed, for negative V
and for the modified relationship between repulsive and attractive LCSs see Ref.[2].
Numerical results

We find the hyperbolic LCSs, using the tool developed in Ref.[8]. Details of the application and
optimization of this procedure to the present configuration and the criteria adopted in order to

select the most relevant LCSs so as to produce a clear physical picture are given in Ref.[3].

MH-t periodic results

In left panel of Fig. 1 the LCS in the magnetic configuration at NP —t = 415 are over plotted on
the corresponding Poincaré map. The repelling (attractive) structures are drawn in red (blue). In
this small amplitude phase the two perturbations with different helicities evolve independently
from each other and each of them induces a magnetic island chain around its resonant surface.
The right panel of Fig. 1 shows how the drawn LCS act as barriers for i.c. initially located where

the green arrow points. These particles tend to align along the LCS without crossing it.

Figure 1: In the left panel the most important LCS are overplotted on the Poincaré map at z =0
and r = 415. The repelling (attractive) structures are drawn in red (blue). In the right panel it is

shown that i.c. located where the green arrow points cannot cross the barrier.
MH-t non periodic results

In Fig. 2 is shown the position at # = 415.2 and ¢t = 417, in the left and right panel respectively,
of two sets of i.c. initially separated by a LCS. In the left panel the two set of i.c. increase their
distance exponentially, positioning themselves in such a way as to maximize their stretching in
the perpendicular direction with respect to the LCS. In the right panel, it is clear that they obey
different dynamics. The black i.c. have a chaotic behavior which distribute them along all the

domain, while the green i.c. remain together, being influenced by the attractive nearby structure.
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An important result is related to the fact that particles having different velocities see different
transport barriers. In Fig. 3 the attracting LCS computed for particles having V = 1000 are
shown in both panels. In the left (right) panel the positions of several sets of particles, initially
located in different positions of the domain and having V = 1000 (V =200 ) are overplotted. We
observe that, although the particle positions for V = 200 appear qualitatively similar to those
in left panel, they are shifted towards higher x-values with respect to black particles having
V =1000. This is due to the fact that particles having V = 200 see a stronger chaos (respect to

particles with V = 1000) that decreases the regular area of the m = 2 island chain.
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Figure 2: Position of i.c. separated by a LCS att = 415.2 (417) on the left (right) panel.
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Figure 3: In the left (right) panel the position of different sets of i.c. evolved with V = 1000
(V =200) overplotted on the LCS evaluated for V = 1000.

Conclusions and remarks

Lagrangian Coherent Structures provide a very convenient tool in order to identify in a compact
and easily visualizable way the main features of the dynamics of the physical system under
consideration as they provide a framework and a language to be used in characterizing the

evolution of such features in time.
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