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Abstract

The concept of Lagrangian Coherent Structures (LCS) has been introduced by G. Haller in

the context of transport processes in complex fluid flows [1]. LCS are a generalization of the

dynamical structures observed in autonomous and periodic systems to temporally aperiodic

flows. They separate the flow domain into macro-regions inside which fast mixing phenomena

take place. Over the finite time span which characterizes the LCS these macro-regions do not

exchange fluid elements and thus act as transport barriers. In two recent articles [2, 3], we have

applied this conceptual framework to the study of particle transport in a magnetized plasma by

referring to a simplified model that uses magnetic field lines as a proxy for particle trajectories

and that allows us to consider explicitly a magnetic configuration evolving in time on timescales

comparable to the particle transit time through the configuration.

Lagrangian Coherent Structures as maximal repulsion-attraction material lines

Consider a dynamical system in 2D phase space x = (x,y) with flow map φ
t
t0(x0) = x(t, t0,x0).

Two neighbouring points x0 and x0 + δx0 evolve into x and x+ δx under the linearized map

δx = ∇φ
t
t0 δx0. Consider a curve γ0 = {x0 = r(s)} and at each point x0 ∈ γ0 define the unit tan-

gent and normal vectors e0 and n0. In the interval [t0, t] the system dynamics advects γ0 into γt ,

x0 ∈ γ0 into xt ∈ γt , the tangent vector e0 into et = ∇φ
t
t0(x0)e0 / [e0Ct

t0(x0)e0]
1/2, and the normal

vector n0 into nt =
(
∇φ

t0
t
)T

n0 / [n0C−1(x0)n0]
1/2. Here T stands for transposed and Ct

t0(x0) ≡(
∇φ

t
t0

)T
∇φ

t
t0 is the Cauchy-Green strain tensor which describes the deformation of an arbitrar-

ily small circle of initial conditions (i.c.), centered in x0 and C−1(x0) = Ct0
t (x0) (time interval

marks are suppressed unless explicitly needed). Let ξ max and ξ min be its two eigenvectors with

positive eigenvalues λmax and λmin. The curves with tangent vector along ξ min and, respectively,

ξ max are called strain lines of the Cauchy-Green tensor. The repulsion ratio ρ t
t0(x0,n0) is de-

fined (see Ref.[4, 5]) as the ratio at which points initially near x0 ∈ γ0, increase their distance
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from the curve [to, t]: ρ t
t0(x0,n0) = nt ∇φ

t
t0(x0)n0.= [n0C−1(x0)n0]

−1/2 = [nt C(x0)nt ]
1/2. Anal-

ogously the contraction rate Lt
t0(x0) is proportional to the growth in time of the tangent vector

L(x0,e0) = [e0C(x0)e0]
1/2. A (hyperbolic) LCS over a finite time interval [t0, t0 +T ] is defined

as a material line along which the repulsion rate is pointwise maximal. This leads to the follow-

ing definitions: a material line such that at each point: λmin < λmax, λmax > 1, e0 = ξ min,

ξ max ·∇λmax = 0 is called a repulsive Weak Lagrangian Coherent Structure (WLCS). A WLCS

which satisfies the additional condition ξ max ·∇
2
λmax · ξ max < 0 is called a repulsive Lagrangian

Coherent Structure. Attractive LCS are defined as repulsive LCS of the backward time dynam-

ics. In the case of a Hamiltonian dynamical system with one degree of freedom, such as that

which describes magnetic field lines at a fixed time (see e.g., [6]), we have λmin λmax = 1.

Magnetic field configuration

Following the study of multiple helicity magnetic reconnection in Ref.[7] we write

B = B0ez +∇ψ(x,y,z, t) × ez, with ψ(x,y,z, t) = 0.19cos(x)+ ψ̂1(x, t)cos(k1yy+ k1zz)+

ψ̂2(x, t)cos(k2yy+ k2zz) in the domain [−Lx,Lx]× [−Ly,Ly]× [−Lz,Lz] with Lx = π , Ly = 2π ,

Lz = 16π with k1y = k2y = 2π/Ly and k1z = 0 while k2z = 2π/Lz. Periodicity is assumed in all

three directions. The initial perturbations, ψ̂1(x,0) and ψ̂2(x,0), are localized at the resonant

surfaces x1 = 0 and x2 = 0.71 respectively. At each fixed physical time t the magnetic flux

function ψ(x,y,z, t) plays the role of the Hamiltonian for the magnetic field lines with x and

y canonical variables and z the magnetic Hamiltonian time (MH− t). The field line equations

become dx/dz=−∂ψ/∂y and dy/dz= ∂ψ/∂x. Different “helicities” kz/ky are needed to make

the Hamiltonian non integrable, i.e., to generate a chaotic magnetic configuration.

In the linear phase two independent island chains are formed at their resonant surfaces: as they

expand and start to interact the dynamics of the magnetic configuration becomes nonlinear,

higher order modes (mostly with the same initial helicities) are generated and regions where

field lines are stochastic are formed and spread as reconnection evolves [7]. We will consider

the normalized physical time (NP−t) interval t = 415− 425 in which chaos, initially developed

only on a local scale (at t = 415), starts to spread on a global scale (at t = 425).

First we consider the dynamical system obtained by taking a snapshot at a given NP− t where

the flux function ψ(x,y,z, t = t̄) is the Hamiltonian and z is the MH− t. Since the configuration

is periodic in z we adopt the Poincaré map technique and compare it with the LCS approach.

In addition since ψ(x,y,z, t = t̄) = ψ(x,−y,−z, t = t̄) attractive LCSs are mirror images of the

repulsive LCSs with respect to y = 0.

Subsequently, in order to account for the magnetic configuration change during the particle

transit time we adopt a simplified model where the particle gyromotion and drifts are neglected
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and the particles dynamics is only included through their (constant) streaming velocity V along

the guide field B0. This allows us to describe LCSs in a time nonperiodic dynamical system and

to identify LCSs that depend explicitly on the different particle velocities. Thus we introduce

a family of nonautonomous dynamical systems characterized by a different velocity V , with

Hamiltonian ψV (x,y,z) ≡ ψ(x,y,z, t = (z− zo)/V ). Here V > 0 is assumed, for negative V

and for the modified relationship between repulsive and attractive LCSs see Ref.[2].

Numerical results

We find the hyperbolic LCSs, using the tool developed in Ref.[8]. Details of the application and

optimization of this procedure to the present configuration and the criteria adopted in order to

select the most relevant LCSs so as to produce a clear physical picture are given in Ref.[3].

MH-t periodic results

In left panel of Fig. 1 the LCS in the magnetic configuration at NP− t = 415 are over plotted on

the corresponding Poincaré map. The repelling (attractive) structures are drawn in red (blue). In

this small amplitude phase the two perturbations with different helicities evolve independently

from each other and each of them induces a magnetic island chain around its resonant surface.

The right panel of Fig. 1 shows how the drawn LCS act as barriers for i.c. initially located where

the green arrow points. These particles tend to align along the LCS without crossing it.

Figure 1: In the left panel the most important LCS are overplotted on the Poincaré map at z = 0

and t = 415. The repelling (attractive) structures are drawn in red (blue). In the right panel it is

shown that i.c. located where the green arrow points cannot cross the barrier.

MH-t non periodic results

In Fig. 2 is shown the position at t = 415.2 and t = 417, in the left and right panel respectively,

of two sets of i.c. initially separated by a LCS. In the left panel the two set of i.c. increase their

distance exponentially, positioning themselves in such a way as to maximize their stretching in

the perpendicular direction with respect to the LCS. In the right panel, it is clear that they obey

different dynamics. The black i.c. have a chaotic behavior which distribute them along all the

domain, while the green i.c. remain together, being influenced by the attractive nearby structure.

45th EPS Conference on Plasma Physics P5.1071



An important result is related to the fact that particles having different velocities see different

transport barriers. In Fig. 3 the attracting LCS computed for particles having V = 1000 are

shown in both panels. In the left (right) panel the positions of several sets of particles, initially

located in different positions of the domain and having V = 1000 (V = 200 ) are overplotted. We

observe that, although the particle positions for V = 200 appear qualitatively similar to those

in left panel, they are shifted towards higher x-values with respect to black particles having

V = 1000. This is due to the fact that particles having V = 200 see a stronger chaos (respect to

particles with V = 1000) that decreases the regular area of the m = 2 island chain.

Figure 2: Position of i.c. separated by a LCS at t = 415.2 (417) on the left (right) panel.

Figure 3: In the left (right) panel the position of different sets of i.c. evolved with V = 1000

(V = 200) overplotted on the LCS evaluated for V = 1000.

Conclusions and remarks

Lagrangian Coherent Structures provide a very convenient tool in order to identify in a compact

and easily visualizable way the main features of the dynamics of the physical system under

consideration as they provide a framework and a language to be used in characterizing the

evolution of such features in time.
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