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Shear Alfvén wave instabilities such as toroidal Alfvén eigenmode (TAE) [1] are expected
to play important roles in magnetic confinement fusion devices as energetic particles (EPs)
contribute significantly to the total power density [2, 3]. TAE can be driven unstable by EPs, and
in turn, induce EP transport and degrade overall plasma confinement. In-depth understanding
of TAE nonlinear saturation mechanisms, e.g. ion Compton scattering [4], is thus of importance
for the qualitative and quantitative understanding of EP confinement in future tokamaks.

The theory presented in Ref. [4] considered that there exists many TAEs in the system, lo-
cated at different radial positions with their frequency slightly different by local parameters.
TAEs are characterized by |k‖| ' 1/(2qR0). Thus, two counter-propagating TAEs with radially
overlapped mode structures can couple and generate ion sound-wave like mode with much lower
frequency, and |k‖| ' 1/(qR0); which, in turn, induces the TAE spectral transfer of fluctuation
energy towards lower frequency TAEs. The wave energy is, eventually, absorbed by linearly
stable lower frequency TAEs with stronger coupling to SAW continuum. The theory of Ref. [4]
also assumed the long wavelength MHD limit with ω/Ωci� k2

⊥ρ2
i , where the nonlinear cou-

plings occur through the parallel ponderomotive force induced by b ·δJ×δB nonlinearity. For
future burning plasmas of interest, however, the parameters usually fall in the short wavelength
k2
⊥ρ2

it > ω/Ωci range [3], and the perpendicular coupling due to Reynolds and Maxwell stresses
may dominate, leading to much lower TAE saturation level than the prediction of Ref. [4] and
consequently, much lower EP transport.

In this work, we generalize the theory of Ref. [4] to fusion plasma relevant short wavelength
regime using nonlinear gyrokinetic theory. The analysis, following closely that of Ref. [4], has
two major differences; i.e., first, the nonlinear coupling cross-section is much bigger, yielding
lower TAE saturation level and EP transport; and second, the scattering cross-section is max-
imized as the perpendicular wave vectors of the interacting TAEs are perpendicular to each
other, which may influence the transport process since TAEs are characterized by kr� kθ . This
second property, contrary to the former, tends to enhance cross-field transport. Since ωTAE is
io the lowest order, independent of n, this maximization may determine the n−toroidal mode
coupling. The details remain to be studied.

Theoretical model
To investigate the nonlinear TAE spectrum evolution, we adopt the standard nonlinear per-

turbation theory, and consider a test TAE Ω0 = (ω0, k0) interacting with a background TAE
Ω1 = (ω1, k1) and generating a low n ion sound wave like mode ΩS = (ωS, kS). The scalar
potential δφ and parallel vector potential δA‖ are used as the field variables, and one has,
δφ = δφ0 +δφ1 +δφS, with the subscripts 0, 1 and S denoting test TAE, background TAE and
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ion sound mode, respectively. Furthermore, δψ ≡ ωδA‖/(ck‖) is taken as an alternative field
variable, and one has δψ = δφ in the ideal MHD limit. Without loss of generality, Ω0 =Ω1+ΩS

is adopted as the frequency/wavenumber matching condition. For effective spectrum transfer by
nonlinear ion Landau damping, we have |ωS| ∼ O(vit/qR0), i.e., the ion sound mode frequency
comparable to thermal ion transit frequency. Therefore, Ω0 and Ω1 are counter-propagating
TAEs, with ω0 ' ω1 and k‖,0 '−k‖,1.

The governing equations describing the nonlinear interactions among Ω0, Ω1 and ΩS, can
then be derived from quasi-neutrality condition and nonlinear gyrokinetic vorticity equation,
while the nonadiabatic particle responses can be derived from nonlinear gyrokinetic equation.

Nonlinear parametric instability
The nonlinear generation of ion sound mode due to Ω0 and Ω1 beating, is derived from

εSδφS = i(Λ̂/ω0)β1δφ0δφ1∗, (1)

where Λ̂≡ (c/B0)b̂ ·k0×k1∗ , εS ≡ 1+ τ + τΓSξSZ(ξS) is the linear dispersion function of ΩS,
with τ ≡ Te/Ti, ΓS ≡ 〈J2

S F0/n0〉, ξS ≡ ωS/(k‖,Svit) and Z(ξS) is the plasma dispersion function.
Furthermore, β1 ≡ σ0σ1 + τF̂1 (1+ξSZ(ξS)), with F̂1 ≡ 〈J0J1JSF0/n0〉, σk ≡ 1+ τ− τΓk.

Since ΩS could be heavily ion Landau damped, one needs to include both its linear and
nonlinear responses while deriving the nonlinear particle responses to Ω0. Substituting it into
the quasi-neutrality condition, one has

δψ0 =
(

σ0 +σ
(2)
0

)
δφ0 +D0δφ1δφS, (2)

in which, σ
(2)
0 ≡ Λ̂2 [−σ2

1 σ0 + τF̂2 (1+ξSZ(ξS))
]
|δφ1|2/ω2

0 and D0≡ iΛ̂τF̂1 [1+ξSZ(ξS)]/ω0.
The nonlinear eigenmode equation of Ω0, can be derived from vorticity equation as(

ε0 + ε
NL
0
)

δφ0 =−
(

D2ω
2
0/b̂0 + k2

‖,0V 2
A D0

)
δφ1δφS. (3)

Here, ε0 ≡ εT (Ω0) is the WKB linear dispersion relation of Ω0, with εT ≡ k2
‖,TV 2

A σT − (1−

ΓT )ω
2
T/b̂T , and εNL

0 ≡ −α
(2)
0 /b̂0 + k2

‖,0V 2
A σ

(2)
0 with α

(2)
0 = Λ̂2 (F̂2− F̂1

)
(1+ξSZ(ξS)) |δφ1|2

and D2 = −iΛ̂
[
F̂1(1+ξSZ(ξS))−ΓSξSZ(ξS)−Γ1

]
/ω0. The TAE eigenmode dispersion rela-

tion can then be derived noting the V 2
A ∝ 1− 2(r/R0 +∆′)cosθ dependence on poloidal angle

θ with ∆′ being Shafranov shift. σ (2) and α(2) correspond, respectively, to the contribution of
nonlinear particle response to ΩS on ideal MHD constraint breaking and Reynolds stress.

Substituting equation (1) into (3), we obtain(
ε0 + ε

NL
0
)

δφ0 =−(Λ̂2
β1β2/(b̂0τεS))|δφ1|2δφ0, (4)

with β2 ≡ β1/σ0− εS. Equation (4) describes the nonlinear evolution of the test TAE Ω0 due
to the nonlinear interactions with Ω1. Since ion Compton scattering related to ΩS ion Landau
damping may play an important role for TAE saturation, we write the coefficients explicitly
as functions of εS, i.e., εNL

0 =−(Λ̂2/b̂0)|δφ1|2
(
Ĝ1 + Ĝ2εS

)
with Ĝ1 = (1−Γ0)σ

2
1 −σSĜ2 and

Ĝ2 =
(
F̂2− F̂1− (1−Γ0)τF̂2/σ0

)
/(τΓS). On the other hand, β1β2/(τεS) = Ĥ1+ Ĥ2εS+ Ĥ3/εS

with Ĥ1 =
(
σ0σ1− F̂1σS/ΓS

)(
2F̂1/ΓS−σ0

)
/(τσ0), Ĥ2 = F̂1

(
F̂1/ΓS−σ0

)
/(τσ0ΓS), and Ĥ3 =
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(
σ0σ1− F̂1σS/ΓS

)2
/(τσ0). The nonlinear Ω0 eigenmode dispersion relation, can then be de-

rived, by multiplying both sides of equation (4) with Φ∗0, noting that εS varies much slower than
|Φ0|2 and |Φ1|2 in radial direction, and integrating over the radial domain. One then has

εS
(
ε̂0−∆0|A1|2−χ0εS|A1|2

)
A0 =−Ĉ0|A1|2A0, (5)

in which ε̂0 is the linear TAE eigenmode dispersion relation, defined as ε̂0 =
∫
|Φ0|2ε0dr.

The coefficients, ∆0, χ0 and Ĉ0, corresponding respectively to nonlinear frequency shift, ion
Compton scattering and shielded-ion scattering, are given as ∆0 = 〈〈Λ̂2(Ĝ1− Ĥ1)/b̂0〉〉, χ0 =

〈〈Λ̂2(Ĝ2− Ĥ2)/b̂0〉〉, Ĉ0 = 〈〈Λ̂2Ĥ3/b̂0〉〉, with 〈〈· · · 〉〉 ≡
∫
(· · ·)|Φ0|2|Φ1|2dr accounting for the

contribution of TAE fine scale mode structures. χ0 can be further simplified, and yields χ0 =

〈〈Λ̂2 (F̂2− F̂2
1 /ΓS

)
/(τ b̂0σ0ΓS)〉〉, which is positive definite.

Equation (5) can be considered as the equation describing nonlinear parametric decay of a
pump TAE (Ω1) into TAE (Ω0) and ion sound mode (ΩS) daughter waves, which can be solved
for the condition of Ω1 spontaneous decay. Note that ΩS could be heavily ion Landau damped,
depending on plasma parameter regime such as τ , two parameter regimes with distinct decay
mechanisms shall be discussed separately.

For weakly damped ΩS due to, e.g., τ� 1, both ΩS and Ω0 are normal modes of the system,
and the parametric dispersion relation is given as

(γ + γS)(γ + γ0) = Ĉ0|A1|2/(∂ωSεS,R∂ω0 ε̂0,R), (6)

with γS and γ0 being, respectively, the damping rates of ΩS and Ω0, and the subscript “R"
denoting real part.

On the other hand, for τ ∼ O(1), ΩS is heavily ion Landau damped, and becomes a quasi-
mode. One then obtains, from the imaginary part of equation (5),

γ + γ0 = |A1|2
(
Ĉ0/|εS|2 +χ0

)
εS,i/(∂ω0 ε̂0,R), (7)

and the parametric instability γ > 0 requires ω1 > ω0; i.e., the parametric decay can sponta-
neously happen only when the pump TAE frequency is higher than that of the sideband, and the
parametric decay process leads to, power transfer from higher to lower frequency part of the
spectrum, that is, downward spectrum cascading [4].

TAE spectral transfer and saturation due to nonlinear ion scattering
Summation over all the background TAEs within the strong interaction region, i.e., counter-

propagating and radially overlapping with Ωk, and the frequency difference |ωk−ωk1| compa-
rable with ion transit frequency (|vi/(qR0)|), denoting TAEs with their eigenfrequencies, i.e.,
Ik → Iω , the summation over “k1" can be replaced by integration over “ω", given many back-
ground TAEs within the strong interaction range with Ωω (continuum limit):

(∂t−2γL(ω)) Iω =
2

∂ωεω,R

∫
ωM

ωL

dω
′V (ω,ω ′)Iω ′Iω , (8)

with Iω ≡ |∇Aω |2, V (ω,ω ′)≡
(
Ĉ/|εS|2 +χ0

)
εS,i/b̂ω ′ , ωM being the highest frequency for TAE

to be linearly unstable, ωL being the lowest frequency for IωL > 0, and one has ωM −ωL '
O(ε)ωT , comparable with the TAE gap width.
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The nonlinear saturation condition can then be obtained from ∂tIω = 0:

γL(ω) =−(∂ωεω,R)
−1
∫

ωM

ωL

dω
′V (ω,ω ′)Iω ′. (9)

Noting that Iω ′ varies in ω ′ much slower than V (ω,ω ′), and Iω ′ ' Iω −ωS∂ω Iω , we have

γL(ω) = (U0Iω −U1∂ω Iω)/(2ω). (10)

Here, U0 ≡
∫

ω−ωL
ω−ωM

dωSV (ωS) and U1 ≡
∫

ω−ωL
ω−ωM

dωSωSV (ωS). Noting that, for the ion Compton
scattering process to be important, one requires ωM−ωL� vit/(qR0) and that V (ωS) ∝ εS,i is
an odd function of ωS varying on the scale of vit/(qR0), one then obtain

Iω ' IM(ωM)+
1

U1

∫
ωM

ω

ωγL(ω)dω, (11)

with IM(ωM) ≡ Iω(ω = ωM), U1 ' π3/2 (C/|εS|2 +χ0
)

k2
‖,Sv2

it/(2b̂ω). The value of Iω at ωM,
IM(ωM), on the other hand, can be determined noting that for |ω −ωM| � |k‖,Svit | and re-
placing the lower and upper integral limits of U0 and U0 by, 0 and ∞, and one has U0(ωM) '
U1/(k‖,Svit and U1(ωM) 'U1/2. IM(ωM) can then be derived from equation (10), noting that
|U0Iω/(U1∂ω Iω)| ∼ |(ωM−ωL)/(k‖,Svit)| � 1, and one has

Iω =
2k‖,SvitωMγL(ωM)

U1
+

2
U1

∫
ωM

ω

ωγL(ω)dω. (12)

The overall TAE intensity at saturation, can be derived by integrating the intensity over the
fluctuation population zone, and we have

IS ≡
∫

ωM

ωL

Iωdω ' γL

U1
ω

3
T

(
1− ωM

ωL

)2

. (13)

In deriving equation (13), we replaced the TAE linear growth rate γL with its spectrum averaged
value, γL(ω) ' γL, which is validated by the fact that, for burning plasma relevant parameter
regimes, a broad TAE spectrum with comparable linear growth rate can be driven unstable. The
saturation level of the magnetic fluctuations, can then be derived as

|δBr|2 ∼
ε2ε2

e f f

2π3/2
ωT γLk2

r

(Ĉ/|εS|2|+χ0)Ω
2
ci

(14)

with εe f f ≡ 1−ωM/ωL ∼ O(ε) following Ref. [4], and |kθ ,T/kr,T | ' ε for TAEs is assumed.
This suggests that, for TAE saturation in the parameter range of practical interest, several pro-
cesses with comparable scattering cross sections may be equally important [3, 5].

The obtained TAE saturation level and spectrum, can then be applied to derive the ion heating
rate from ion nonlinear Landau damping [6] and the EP transport coefficient, which will be
reported in a future publication [7].
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