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The paper continues our previous theoretical study and simulations of low-frequency 

turbulence and the associated cross-field anomalous transport processes in tokamak core 

plasmas [1-3]. The main goal of the paper is the analysis and simulations of toroidal 

momentum transport in the presence of self-consistent nonlinear turbulent plasma 

convection. Contrary to many other studies our simulations are based on adiabatically-

reduced MHD-like plasma dynamic model (ARD-model) in which the toroidal plasma 

flows are the inherent parts of the nonlinear turbulent plasma convection [1, 2]. Code 

CONTRA-C developed in a frame of simplified cylindrical model for tokamaks was used 

for this series of simulations.  

 We have to remind that all physical functions such as electron and ion pressures pe,i, 

plasma density n, electric potential f, dynamic vorticity w in the ARD-model [1, 2] consist 

of averaged over magnetic surface and fluctuating parts ( ffff += ). Correspondingly, the 

equation set consists of transport equations for the surface averaged values and equations 

those determine temporal and 2D spatial behavior of the fluctuations. Transport equations 

include both background (typically neoclassical) fluxes and non-diffusive (anomalous) 

fluxes those depend on fluctuations. All equations are written in terms of the following flux 

coordinates: minor plasma radius 0/),,( Btzr pr Y= , where Y(r,z,t) is toroidal magnetic 

flux and B0 toroidal field at the magnetic axis, j is toroidal angle, and q is poloidal angle.  

The equations of motion in our model [1-3] have the form of equations for the 

dynamic vorticity fwww += , which is a generalization of the conventional vorticity Df in 

the case of non-uniform density and magnetic field. We assume that the magnetic field in 

tokamaks is axi-symmetric one with nested magnetic flux surfaces. As a result, there are 

inherent conservation laws for the toroidal momentum and the dynamic vorticity in this 

model. Keeping in mind the toroidal momentum conservation, we introduce the specific 

toroidal momentum of the plasma sheath of thickness dr :  
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where mi is ion mass, c is speed of light, prime denotes derivative ¶r , jqddgV ò=¢  is the 

specific volume of the plasma sheath, jqddgrVr ò¢= 22 )/1(  is the averaged square of 

the major radius, W(t,r) is the frequency of the toroidal plasma rotation, 0/)( Bqh r= , q(r) 

is the safety factor. The definition (1) for M¢(t,r) accounts the major two-fluids effect that is 

the contribution of the ion diamagnetic drift velocity (which is proportional to ipr¶ ) to the 

specific toroidal momentum. Then, instead of equation for the averaged vorticity ),( rtw  

we can write the equation for the specific toroidal momentum: 
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LHS in Eq.(2) includes radial flux of momentum caused by the “Reynolds stress”, while 

RHS accounts momentum flux due to collisional ion viscosity with factor 

L= 224.0 cemX ip  and torque source QM , where L is Coulomb logarithm, Rq Lirr 0
2
0 4= ,  

R is major plasma radius, Lir  is ion gyro radius at the magnetic axis. The convective  

momentum flux in LHS of Eq. (2) vanishes at the both boundaries. Boundary condition 

¶rW=0 at r =0 provides zero viscous fluxes of momentum, dynamic vorticity, and kinetic 

energy at the axis. If the viscous fluxes of the momentum and the dynamic vorticity also 

vanish at the external boundary r =rL and torque source 0=MQ , the Eq. (2) provides 

conservation of the total momentum and the integral vorticity:  
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Thus, the intrinsic toroidal rotation essentially depends on the external boundary condition 

for the viscous flux of momentum (at r =rL). Assuming that f = 0 at the external boundary 

(r =rL), plasma potential can be restored by the following expression: 
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 Temporal evolution of self-sustained plasma turbulence and the resulting anomalous 

transport processes was simulated for parameters of quasi-steady OH stage in shot #61203 

in T-10 tokamak: central plasma density 319
0 101.3 -×» mn ,  central  temperatures  of  

electrons keVTe 1.10 » and ions keVTi 5.00 » , plasma energy confinement time tE »32ms.   
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Fig. 1.  Evolution of the total toroidal momentum M(t): 1 – low viscosity  regime  ( sm
L

/05.0 2»
=rr

h );  

2 – viscosity enhancement factor is 10;   3 – enhancement factor is 20;   4 – enhancement factor is 50.  
 

We assume also the standard hydrodynamic condition of “boundary layer” 0),( =W
= L

t
rr

r . 

The simulations were performed for various initial values of the total toroidal momentum 

M(t=0). Temporal evolution of the total toroidal momentum M(t) is shown at Fig. 1, which  

demonstrates that M(t)  is  still  almost  constant  (curve  1)  in  the  case  of  sufficiently  low  

kinematic ion viscosity (which corresponds to the above mentioned plasma parameters), in 

spite of nonzero momentum flux through the surface r =rL, while in regimes with enhanced 

viscosity (curves 2, 3, 4) M(t) decreases with time and then oscillates near zero level. For 

another positive and negative initial values of M(0), M(t) demonstrates the similar behavior.  

           
Fig. 2.  Evolution of the integral dynamic vorticity W(t) for 5 different initial values of the toroidal momentum 

M(t=0)  in the case of low viscosity sm
L

/05.0 2»
=rr

h .   

Fig. 2 shows that in the case of the low ion viscosity the integral vorticity W(t) tends to a 

finite quasi-steady level and then stochastically oscillate near this level. Simulations also 

have shown, that in regimes with the enhanced ion viscosity W(t) decreases similarly to 

M(t) and then oscillates near zero level.  

  Maintenance of a quasi-steady intrinsic toroidal rotation in the presence of viscous 

friction at the boundary and without a torque source seems a little bit surprising. The 

physical reason of the quasi-steady maintenance of the toroidal momentum M(t) in regimes  
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Fig. 3.  Profiles of W(t,r) in various moments of time in regime with low viscosity ( sm

L
/05.0 2»

=rr
h )  

and initial  value of total momentum 3 2( ) 2.2 10 /M t kg m s-» × × .   

Fig. 4.  Profiles of the plasma potential ),( rf t  for various  M(t=0):      1 – 3 2( ) 2.2 10 /M t kg m s-» × × ;  

2 – 3 2( ) 2.2 10 /M t kg m s-» - × × ;        3 – 3 2( ) 8.8 10 /M t kg m s-» - × × . 
 
with  low  viscosity  is  illustrated  by  Fig. 3,  which  shows  profiles  of  W(t,r)  in  various 

moments  of  time.  It  is  seen  that  W¶r  oscillates near the external boundary with a 

characteristic frequency which is higher than the dissipative rate in the low viscosity 

regimes. As a result, the time-averaged flux of the toroidal momentum at the external 

boundary can vanish. Thus, the simulations reveal a new possible mechanism of quasi-

steady maintenance of the intrinsic toroidal rotation in regimes with finite, but the 

sufficiently low plasma viscosity. 

Profiles of the plasma potential for 3 initial values of toroidal momentum in the case 

of  the  low  ion  viscosity  are  shown  at  Fig.  4.  It  is  seen  that  due  to  the  presence  of  the  

diamagnetic ion drift in Eq. (4) there is an asymmetry between profiles, which correspond 

to positive and negative momentums.  Typically, in the most experiments, plasma potential 

is negative at the axis. Our simulation gives the similar result. However, in the case of the 

sufficiently high negative momentum the potential can become a slightly positive one 

(curve 3 at Fig .4).  
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