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Introduction

The heat flux is one of the key parameters used to quantify and understand transport in fusion
devices. A new method is introduced to calculate the heat flux including its confidence with
high accuracy based on perturbed measurements [1]. It is based on ideal filtering to optimally
reduce the noise contributions on the measurements and piece-wise polynomial approximations

to calculate the time derivative. Allowing to:
1. estimate the effective diffusion coefficient in a new way

2. assess the relevant transport mechanisms: convective velocity, temperature (gradient) de-

pendencies, etc.
3. non-linear contributions and dependencies.

The methodology is applied to a measurement example using electron cyclotron resonance heat-

ing block-wave modulation at the Large Helical Device showing the merit of the new method.

Direct calculation of the heat flux
The heat flux follows from the conservation of energy (assuming no mass transfer and no

radiation):

d
8—t(ne7;(p,t>) =—Vpq.(p,t)+p(p,t) (1)

+ boundary conditions.
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with the electron temperature 7, density 7., heat flux g, heat source term p (p,t) all as function
of the dimensionless radius p.

Hence, the heat flux can be calculated in cylindrical coordinates by [2, 3]

1 [P d
aclp) == ["p (5 (T (pt) = p(p.r) ) dp. @
pJo dt
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Fig. 1: LEFT: Overview of discharge LHD#111121 (a) time evolution of the temperature and density; (b)
power density averaged over periods. RIGHT: Spectrum of the time trace of at p = 0.47 (LHD#111121).
(a) Shows the original signal in grey and the filtered signal with stars. Various estimates of the standard
deviation are shown where oy is the standard deviation in the frequency domain and o©; time domain
(stationary white noise). The abbreviations stand for sur: surrounding frequency lines used to calculate
variance, caf: variance per frequency line, ca: variance calculated over over windowed time samples.
(b) Amplitude of V,T, calculated by multiplication with i® and the corresponding standard deviation of

the individual frequency lines in the time derivative spectrum.

Steps taken to increase the accuracy of the heat flux reconstruction:

1. average over periods + use only sparse harmonic content (see Fig. 2(a) and Fig. 1(LEFT),

respectively).
2. variances estimated from data (Fig. 2).
3. inverse Fourier transform: time domain one period (Fig. I(LEFT) and Fig. 2).

4. piece-wise polynomial fit to suppress oscillations (Fig. 2).
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Fig. 2: Time evolution of average over periods of discharge LHD#111121 at p = 0.47 (a) temperature;

0.005 0.01

(b) time derivative of the temperature, (c) spatial derivative of the temperature; and (d) perturbative heat

flux. The different lines are the average over periods (light grey), harmonic reconstruction using ideal

filtering (black), and piece-wise polynomials (red and blue). In the bottom subfigures are the confidence

bounds (conf. bnd. 1.960) in dashed (dotted) lines and the difference between the harmonic reconstruc-

tion and the piece-wise polynomials (full lines).

Resulting perturbative heat flux and estimation of ), using slopes

Errors due to

e synchronization errors between RF and ECE measurements

e sensor dynamics

e deposition profile

can break the straightness of the lines and/or cause errors in the estimate of the diffusion coef-

ficient x,.. However, for the estimation of ), knowledge of the heat source is not required when
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it is constant. Removing the perturbation from equation (2) results in extraordinary straight

slopes. These slopes are a measure of the diffusion coefficient [4], i.e., g (p,t) = x. 9T /dp.
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LEFT: Perturbative heat flux based on (2) versus —dT /dp based on piece-wise polynomial (color) and
harmonic reconstruction (grey). RIGHT: Perturbative heat flux based on temperature only (p (p,t) =0)

in (2) versus —dT /dp based on piece-wise polynomial (color) and harmonic reconstruction (grey).

Conclusion
A new methodology has been presented to assess the heat flux and diffusion coefficient re-
sulting for this discharge and operating point in
e accurate estimates of diffusion coefficient (relative errors between heat source on and
off extremely small confidence bounds, absolute errors can be larger than given due to

calibration errors).
e no dependency of dT /dp on x, (dT/dp) observed.
e no convective velocity observed.
e apparent dependency of y, on the total heating power.
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