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We consider the Weibel, purely aperiodic instability in a collisionless plasma, relativistic or

not, for an important in practice case when the particle distribution functions of all species

exhibit mirror symmetry with respect to a certain plane xy and a wave vector of an ordinary

wave perturbation is parallel to this plane, i.e., kz = 0 and f0α(px, py, pz) = f0α(px, py,−pz),

where p = (px, py, pz) is the particle momentum. In this case, we obtain a novel analytical cri-

terion for the Weibel instability using its analogy with a long-wavelength soft-mode instability

which is well known in the solid state physics. It facilitates an analysis of the Weibel insta-

bility and agrees with the results which have been known for the certain particle distributions,

including the bi-Maxwellian, power-law, and parallelepiped ones as well as various variants of

the so-called waterbag distributions. Also, for a series of special cylindrically-symmetric parti-

cle distributions we find the analytical dependence of the Weibel-instability growth rate on the

wavenumber of perturbation and show that it agrees well with the criterion presented [1].

The instability is aperiodic and its growth rate increases with wave number k but thereafter

vanishes, so that there is a point in the dispersion curve at which the frequency ω = 0 and k > 0.

If we pass to the limit ω → 0 in the dispersion equation for an ordinary mode, we find

k2 =−∑
α

4πNαe2
α

c2

∫∫∫ f0α

mαγα

[
1+

p2
z

p2
k

]
d3p, (1)

where eα ,mα ,γα ,Nα are the charge, mass, Lorentz factor and density of particles of the sort α ,

and pk =(pk)/k. Note, leaving aside regularization of this expression with respect to Cherenkov’s

singularity of the integrand function at pk = 0 (see below), that the right-hand side of this equa-

tion depends on the direction of the wave vector k but not its modulus. Accordingly, the point

with ω = 0, k 6= 0 can exist in the dispersion curve at the chosen direction of the wave vector

if the right-hand side of Eq. (1) is positive. This equation defines the boundary of the region of

wave numbers in which instability is realized, and the condition for its existence takes the form
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The integrand in Eq. (2) has a singularity requiring a detour in the complex plane. It accounts for

the possible negative value of the integral in which the integrand is nowhere negative at real p
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values. This singularity does not preclude the application of criterion Eq. (2), because the value

of the integral is independent of the way of its detour if the distribution function is smooth.

Equation (2) defines a sufficient condition for the existence of instability if quantity k2 has

a finite value given by Eq. (1) for which ω = 0. Such an instability is realized at least in the

vicinity of this k value; generally speaking, it may not be aperiodic and may be accompanied by

instability in other wave number ranges to which criterion given by Eq. (2) bears no relation.

The informative value of the sufficient criterion of instability becomes higher and is related to

purely aperiodic instability (such as a soft mode with Reω = 0) when the particle distribution

functions fα exhibit central symmetry fα(p) = fα(−p), which, in particular, guarantees the

equality of current density to zero. In this case the dispersion relation takes the form
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The term added to integrand becomes zero upon integration but regularizes the subintegral

function, i.e., explicitly neutralizes its singularity. It can be concluded that there is a value of

ω2 < 0 satisfying Eq. (3) at any k smaller than that given by Eq. (1). If ’self-sufficient’ condition

Eq. (2) is satisfied, instability exists within the entire range of wave numbers from zero to the

maximum value given by Eq. (1), wherein it must be aperiodic, i.e., a soft-mode type instability.

To have a rough idea of the physical sense of the above-derived criterion for the Weibel in-

stability Eq. (2), let us consider one sort of particles α responsible for instability. To this end,

assume that ky = 0, i.e., direct k along the x-axis and denote F(px, py, pz) = f0αNαe2
α/mαγα .

Assuming that F as a function of px has a maximum at px = 0, characteristic value F0, and

characteristic width p̃x, while the expression (F−F(0, py, pz))/p2
x has a characteristic value

−F0/ p̃2
x and the same characteristic width p̃x allows the instability condition to be approxi-

mately rewritten in the form
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This inequality can be conventionally interpreted as the condition for the root-mean-square

components of particle momenta: 〈p2
z 〉 > 〈p2

x〉. In this case, the maximum wave number, i.e.,

the boundary of the instability region, is estimated as

c2k2
max ∼

ω2
p

γ̃
·
(

p̃2
z

p̃2
x
−1
)
, (5)

45th EPS Conference on Plasma Physics P5.4010



where the tilde denotes the characteristic values of the respective quantities.

The most favorable anisotropy corresponds to the elongation of the distribution function

across the perturbation wave vector k = kx0 and its flattening along it. In general, instability

is not aperiodic (Re ω 6= 0) and exists for the entire cone of wave vectors, encompassing the

distinguished direction x0 of plasma anisotropy.

The linear stage of instability development definitely terminates when the newly formed elec-

tromagnetic perturbations markedly alter the momentum distribution of the particles responsible

for instability and radically mix their trajectories on the field nonuniformity scale, if harmonics

are generated within a wide enough wave number range ∆k.

To analyze a saturation criterion, for certainty, we consider a single sort of particles. The

simplest estimates of the saturation level are obtained on the assumption that the rotation angle

of a particle’s velocity in the magnetic field Bsat being generated becomes close to unity during

the time of the order of the reverse growth rate time. Then, the cyclotron frequency in the quasi-

uniform saturating magnetic field becomes equal to the instability growth rate Γ:

eBsat

mcγ
∼ Γ. (6)

Substituting the maximum growth rate in the form of Γ∼ (v/c)ωp/
√

γ and taking into consid-

eration that such a growth rate is realized for the wave numbers k ∼ ωp/c
√

γ yield
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This means that the energy of a magnetic field saturating Weibel type instability can be of the

same order of magnitude as the particle kinetic energy in both relativistic and non-relativistic

plasmas at Γ ∼ kv. If inequalities Γ� kv or Γ� kv are satisfied for the wave numbers of

harmonics growing with a growth rate of the order of Γ, the saturating (quasiuniform) magnetic

field will be weaker and will not reach the ’equipartition’ magnitude.

In the difficult-to-realize hypothetical case of Γ� kv, saturation takes place when the change

in particle momentum over inverse growth rate time under the effect of the inductive electric

field Esat = ΓBsat/kc accompanying the appearance of a magnetic field becomes equal to the

characteristic particle momentum mvγ , i.e., eEsat/Γ ∼ mvγ . In this case, the saturating mag-

netic field is thus independent of the growth rate: Bsat ∼ mcγkv/e. This estimate of the onset of

the nonlinear stage corresponds to ’magnetization’ of plasma particles when their gyroradius

becomes equal to the scale of growing large-scale perturbation.

In the case of a small exceedance of the instability threshold (or in the case of weak anisotropy),

when Γ� kv, a relatively large-scale magnetic field with the wave numbers k�ωp/c
√

γ is gen-

erated and in the inverse growth rate time most particles are displaced over the distance of many
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wavelengths of this field (as they move in the magnetic field of variable sign and hence change

their velocity direction much more slowly, on average, than in the constant sign field). As a re-

sult, the deflection angle for a harmonic in space perturbation is estimated as (eB/mcγΓ)(Γ/kv);

in the case of generation of a large number of random harmonics in a wide wave number range

∆k ∼ k, the particles’ velocity deflection angle varies in accordance with the diffusive transport

and reaches a value of the order of (eB/mcγΓ)
√

Γ/kv in the inverse growth rate time. In the last

most realistic case, the energy density of the magnetic field at the time of saturation approaches

a value around
B2
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∼ 1
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)
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if the saturation condition relies on the equality between the characteristic magnetic field scale

1/k and the root-mean-square of the additional particle displacement occurring in the inverse

growth rate time due to diffusive velocity fluctuations of the order of φv.

Both coefficients in parentheses in Eq. (8) are smaller than unity and define the difference

between this estimate and the maximum possible value Eq. (7). Maximum energy density is

achieved in magnetic fields with scales around 2π/k corresponding to the maximum growth

rate. These scales are small compared with the gyroradius of free particles. For weak anisotropy,

when Γ� kv, the known estimate of energy density in the saturation field, corresponding to the

approximate equality of the growth rate Γ to the bounce-oscillation frequency
√

kveBsat/γmc

of the particles in the vicinity of zero magnetic field regions, is likely to underestimate the true

value by a factor of kv/Γ, since, in general, only a small number of particles are subject to

bounce-oscillations.

We compare various known estimates of a magnetic field saturating the Weibel instability [1]

and, in particular, point to the poorly studied case when this field cannot achieve an equipartition

value due to a weak anisotropy of the initial particle distribution, when a relatively large-scale

magnetic field is generated. We estimate a number of particles which are subject to bounce-

oscillations under these conditions and come to a general criterion of the saturation of the Weibel

instability [1]. We show that it is consistent with the analytical results obtained previously for

the case of a strong anisotropy as well as with the numerical simulations carried out for the

particular examples of a weak anisotropy of particle distribution. Both criteria for the instability

and its saturation may be useful for the analysis of typical situations in the space and laboratory

collisionless plasmas with anisotropic particle distributions.
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