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Stochastization of edge magnetic fields is extensively studied not only for the ELM mitigation
but also for the plasma detachment and the impurity transport. A thick stochastic magnetic
field layer called “ergodic layer” of the large helical device (LHD) consists of stochastic
magnetic fields with three-dimensional structure intrinsically formed by helical coils, while
well-defined magnetic surfaces exist inside the last closed flux surface [1]. It is therefore
extremely important to study the impurity behavior and transport in the ergodic layer and to
compare with those in the scrape-off layer of tokamaks. In LHD, it is found that carbon
impurities are screened by the presence of the ergodic layer [2] and iron impurities are more
effectively screened. As a result, the iron density in core plasmas of LHD is found to be
extremely low despite the stainless steel vacuum vessel [3]. A transport model for the impurity
behavior in the ergodic layer has been proposed considering the parallel momentum balance on
impurity ions along a magnetic field line connecting the core plasma and the divertor plate

based on the following equation;
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where five terms in the right-hand side are contributions of impurity ion pressure gradient,
parallel electric field, friction force between bulk ions and impurity ions, electron thermal force,
and ion thermal force, in the order [4]. Among these terms, the friction force term and the ion
thermal force term are the dominant terms. When the ion density gradient increases, the friction
force increase resulting the impurity flow is directed toward divertor plates, which means the
impurity screening. On the other hand, when the ion temperature gradient increases, the ion

thermal force increases resulting that the impurity flow is directed toward the core plasmas,
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Intensities of carbon line emissions are

Fig. 1 Electron density dependence of line intensity of
(a) CIIL, (b) CIV, (c) CV, (d) CVI normalized by the
electron density and (e) line ratio CV / CIV for

. Lo . . deuterium and hydrogen discharges.
monitored as an indicator of the impurity

screening. CIII (977.03 A, 2s2-2s2p) and CIV (1548.02 A, 2s-2p) are measured using a 20 cm
normal incidence VUV spectrometer [5], while CV (40.27 A, 1s>-1s2p) and CVI (33.73 A,
1s-2p) are measured using a grazing incidence EUV spectrometer [6]. The ionization potential,
Ei, for C**, C3*, C* and C*"is48 eV, 65 eV, 392 eV, and 490 eV, respectively. Therefore, CIII
and CIV radiation is emitted by carbon ions with low Ei located at the outer region of the
ergodic layer, while CV and CVI radiation is emitted by carbon ions with high Ei located at
inner region of the ergodic layer. Figure 1 shows the electron density dependence of line
intensity of (a) CIII, (b) CIV, (¢) CV, and (d) CVI normalized by the line-averaged electron
density and (e) a line ratio of CV / CIV as an indicator of the impurity screening effect. Smaller

values of the ratio leads to enhancement of the impurity screening effect. The line ratio
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decreases with the electron density, because carbon lines emitted from the outer region of the
ergodic layer (CIII, CIV) increase, while those from inner region (CV, CVI) decrease. It
indicates enhancement of the impurity screening in the high density regime. Figure 1(e) also
shows a comparison of the line ratio between the D plasmas compared to the H plasmas. The
impurity screening effect is more obvious in the D plasmas. Enhancement of the friction force
in D plasmas might be one of the reasons of the effective impurity screening.

Figure 2 shows vertical profiles at the bottom edge of the ergodic layer of the flow velocity
derived from the CIV line emission measured by VUV spectroscopy for an H plasma and a D
plasma with a magnetic configuration with Rax = 3.6 m and B; = 2.75 T. The observation range
of the edge profile measurement of the VUV spectroscopy is shown in Fig. 2 [7]. The flow
velocity along the sightline, vz, is given by vr = ¢
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code, EMC3-EIRENE [8]. On the other hand,

ergodic layer of impurity flow velocity derived
from the Doppler profile of the CIV line emission
the maximum value of the flow velocity inthe D | caqured by VUV spectroscopy in a D plasma
plasma is clearly smaller than that in the H  (red open circle) and a H plasma (blue closed
plasma. circle). The observation range of the VUV

spectroscopy is illustrated together.
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The electron density dependence of the
maximum value of the observed flow is
summarized in Fig. 3. All plots in the figure
have directions same as the friction force. In
the case of the H-discharge, the flow
increases with the electron density. The
result supports a prediction by the simulation
that the friction force becomes more
dominant in the force balance in higher
density regime, which results in the increase
of impurity flow causing the impurity
screening. In the case of the D-discharge, the
flow has a smaller value. In the friction force
term in the equation of the momentum

balance, mz (Viy - Vz/™) | 7, the parallel
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Fig. 3 Observed C** flow at the bottom edge of the
ergodic layer in the H and D plasmas as a function of
density for inward-shifted magnetic configuration

with R, = 3.6 m.

velocity of the bulk ion, Vi, and the collision time between the bulk ion and the impurity ion, z,

might be changed between the H-discharge and the D-discharge. Further experiments and

simulations for the H-D comparison are needed to clarify the difference.
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