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During an edge localized mode (ELM) event, the plasma suddenly erupts releasing a signif-
icant fraction of its stored energy over few microseconds. The working hypothesis for the on-
set of ELM is the destabilization of magnetohydrodynamic instabilities, namely ideal peeling-
ballooning modes . A body of literature "** supports the paradigm of coupled peeling bal-
looning (PB) modes as the driver of ELM events. Refs.>¢ have alternatively pointed out that
ELMs are the result of a basic detonation scenario, where a ballooning instability nonlinearly
grows explosively. While the PB theory and the explosive scenario have appealing features that
could explain ELMs, the ELM onset mechanism remains elusive — specifically when the edge
parameters can exist near the stability margin for a substantial part of the period preceding

the ELM onset. Here, we discuss experimental results indicating that pedestal mode nonlinear
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Figure 1: Example spectrogram of the magnetic fluctuations for shot 170881. (a) Magnetic spectrogram during multiple ELMs. Here the ELMs
are represented by the thick vertical lines. Typical rise time of these ELMs is ~ 80us. (b) Zoomed spectrogram over a shorter time window
where the core modes have been filtered out.

interactions can lead up to either bursts or ELM onset. Our previous work (Diallo et al. EPS
2018) suggests that the bursts are caused by sudden nonlinear coupling with saturated dominant
inter-ELM modes. We also speculated that these bursts appear to be reminiscent of an “aborted”
ELM given that the pedestal was near the stability boundary. Basically, it is plausible that the
radial extend of the nonlinear mode coupling was not sufficient to expel significant energy to
resemble an ELM.

Here, we focus on pedestal mode nonlinear interactions leading to an ELM. In summary, we

identified regimes where the PB provides a soft limit for the pedestal and a nonlinear mechanism



46" EPS Conference on Plasma Physics 04.103

leads to the ELM onset (this work is reported in Ref.”).

The results leverage the many experimental results presented in Refs. $%1%1L1213 in which the
fixed pedestal gradients appear to be pinned to the linear marginally stable peeling ballooning
profiles prior to the ELM onset — to investigate the dynamics of the pedestal modes leading up
to the onset of an ELM. Note that a summary of the pedestal turbulence has been reported in
Ref. !4,

Specifically, recent experiments have shown that the pedestal density and temperature gra-
dients after an ELM reach a quasi-stationary state®!%!:!2 during which the pedestal structure
(width and height) either evolves slowly or remains quasi-stationary for few milliseconds prior
to the ELM onset. During this quasi-stationary phase between ELMs, pedestal localized modes
have been observed to grow and saturate (e.g., see Refs®%10:1312:16) "These modes were ob-
served to be correlated with the evolution of the edge profile gradients later in the ELM cycle
in multiple devices, namely AUG!'%!! C-Mod®, DIII-D 2, and JET?.

The EPED model predicts the pedestal structure (width and height) as the intersection of local
kinetic ballooning and global peeling ballooning criteria near the stability threshold at which
the ELM is triggered 7. Nonetheless, it has been observed in many experiments that the pedestal
gradients are nearly stationary for last few milliseconds of ELM cycle. The question that arises
is — given that the pedestal can remain locked in this state — which mechanism leads to the onset
of the ELM.

The mechanism leading to the onset of an
ELM event is studied on the DIII-D tokamak. ) ol el
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Figure 2: Dynamics of the frequency and amplitude of the three dom-
inant modes observed in magnetic fluctuations as a function of ELM
cycle [the time relative to an ELM in ms is on the top horizontal axis
for reference]. The reference + = 0 is located at the ELM onset. (b)

h bili int 4 . Associated mode amplitude evolution during the ELM cycle, in log-
rent are near the stabi lty p01nt ms prior to scale. These quantities have been statistically averaged over multiple

during the last phase of an ELM cycle, indi-
cate that the edge pressure gradient and cur-
the ELM onset (see similar observations in inter-ELM periods. The shaded area represents the standard deviations.
refs. AUG!'%!:18 /C-Mod?, DIII-D'2, and JET?®, and discussions by Kirk et al. in '*). The ques-
tion that arises — why is the pedestal not erupting?

The main diagnostics used in this analysis are the fast magnetic probes measuring fluctua-
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tions in the poloidal magnetic field (referred to as By) and the spatially resolved beam-emission
spectroscopy (BES) diagnostic probing the local density fluctuations!® (referred to as on,).
Figure 1(a) displays the magnetic spectrograms showing quasi-coherent fluctuations between
ELMs. This figure shows multiple modes between ELMs. Fig. 1(b) represents a zoomed in ver-
sion of the spectrogram identifying the three dominant modes (Note each mode’s amplitude
and frequency were tracked between ELMs and core modes were excluded — modes whose
amplitudes are not affected by the ELMs are identified as core modes.)

We systematically track their amplitude and frequency following local maxima of the spec-
trogram up to the ELM event. The same color code for the three modes is used throughout
the paper. Figure 2(a) displays these mode frequencies as a function of ELM cycle t, where
t = t/Tinter—gLm and Tipe,—pry is the normalized duration of each inter-ELM period [t = 0
corresponds to the ELM onset.] Similarly, Fig. 2(b) shows the associated amplitude evolution.

To confirm that the modes, associated with frequencies above, are localized in the pedestal,
we utilize the 2D BES system as shown in fig. 3(a). Figs. 3(b) and (c) display the spectrogram
and power spectra, both showing the same frequencies as those observed in the magnetic sig-
nals. Figs. 3(d) and (e) show the 2D correlation map, and the dispersion relation, respectively.
To further characterize the radial profiles
of these three modes and their evolution (5) BES spectzogzam (@ (B
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Figure 3: (a) 2D cross section with the BES probes. (b) BES spectro-

probes. FlgS 3(b) and (C) represent the gram at one probes. The vertical lines indicate the ELMs. We focus on
the long inter-ELM periods. (c) Time-averaged of the spectrogram to

spectrogram and time-averaged spectra. Fig- clearly show similarity between magnetic probes and BES probes spec-
tra. (d) 2D correlation map. (e) Dispersion relation.

ure 3(d) displays the 2D correlation map

computed using the BES probes. We then focus on the poloidal correlation lengths
for each dominant mode to construct the dispersion relation (as shown in Fig. 3(e)).
The three dominant modes’ contributions to (By, dn,) indicate a transition from a dominant
contribution of the blue mode during the first half of the ELM cycle (see Fig. 4(b)) towards
a more balanced contribution between the three modes during the second half (see Fig. 4(c)).
From the first half to the second one, the blue mode shows a loss in correlation (By, 6n,) while

the green and red modes display an increase in correlation. Figure 4(d) represents the combined

radial profiles due to the three modes. The profile of the last part of the ELM cycle is clearly
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shifted towards the separatrix. This shift is due to the contribution of the red mode that peaks
near the ¢ = 6 surface (see Fig. 4(c)), in contrast to the blue and green modes which peak near
q = 5. Given that this correlation provides a proxy for the location of the modes, Fig. 4(d) shows
an outwards shift of location of the fluctuations.

In addition, Figure 4(c) and (d) suggest that there is
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Figure 4: Radial profiles during the ELM cycle. (a) 2D
map of the BES locations for reference spanning the
whole pedestal ¢, = 0.9 — 1. (b) Frequency resolved ra-
dial profiles of the three dominant modes using correla-
. tion between magnetic probe (By) and BES chords (67,)
Department of Energy’ Office of SCICI’ICC, Office of Fu- during the first half of the ELM cycle and (c) during the

. . . . second half of the ELM cycle. (d) Radial profiles aver-
sion Energy SCIGI’ICGS, using the DIII-D National Fu- aged over the three dominant modes during both phases

of the ELM cycle.

possible tool for ELM suppression.
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