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Introduction ICRF heating is one of the three auxiliary heating methods planned for ITER.
First ITER plasmas with ICRF heating are foreseen for its non-active phase of operation. A
detailed assessment of ICRF schemes available in this phase was recently carried out [1]. As
a result, the ICRF schemes considered for ITER include the so-called three-ion ICRF heating
schemes in addition to the standard minority and majority ion heating schemes. Over the past
few years, such three-ion ICRF schemes have been a focus of intensive research from the
theoretical, numerical and experimental point of view [2]. In the present work, we analyse
discharges carried out with D-(Dxgi)-H and D-(*He)-H three-ion ICRF schemes on JET and
ASDEX Upgrade tokamaks using the ICRF modelling code PION [3].

PION code PION computes the time-evolution of ICRF power absorption and the
distribution functions of the resonant ions in a self-consistent way [3]. It has been extensively
compared against experimental data for a large variety of minority and majority ion heating
schemes on JET, AUG, DIII-D and Tore Supra. It is based on simplified models, which
makes it relatively fast. Thanks to its speed, it forms a part of the automated data processing
chain at JET, and it is being installed in the ITER Integrated Modelling and Analysis Suite
(IMAS) for the use in integrated predictive modelling of ITER plasmas. First results from
PION modelling of ICRF heating in the non-activated phase of ITER are reported in [4].
PION modelling of D-(Dnsi)-H scheme in JET We have analysed 2.9T/2MA
hydrogen-rich L-mode discharge 91256 carried out in JET with D-(Dngi)-H ICRF scheme [2]
with PION. In this discharge, up to 2.5 MW of ICRF power was applied using dipole phasing
at a frequency of 25 MHz, aligning the Doppler shifted fundamental resonance of D NBI
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particles with a maximum injection energy of 100 keV in the region of the enhanced wave
field [E+|* in the vicinity of the ion-ion hybrid layer of D and H ions. The main plasma
parameters are shown in Fig. 1. The discharge has three different phases of applied ICRF to
D NBI power: NBI-only phase and two phases with a varied Picrr/Png1 ratio, one with
Picre/Pner = 0.7 and the other with Picre/Pngr =0.3. As can be seen in Fig.1, the central
electron temperature, sawtooth-free period, neutron rate and gamma ray emission are greatly
enhanced when ICRF power was applied. Moreover, their enhancements depend on

Picre/PnBI.
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Figure 1 Main plasma parameters for JET without including ICRF in the simulation is also
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According to PION, using measured data as input, damping of ICRF power by D is about
2 MW with Picre/Pngr of 0.7 and it drops to 0.2-0.4 MW with Picre/Pngr of 0.3. The rest of
the ICRF power is absorbed by electrons. As a result of the absorption of wave power by
resonant D ions, PION predicts that a high-energy tail forms in the distribution of resonant D
ions, which is confirmed by multiple diagnostics measuring deuterons up to 1.5 MeV [2].
The effective D ion tail temperature Terrp as given by PION is up to about 150 keV att=11 s,
which is in good agreement with Tesr,p of 180 and 140 keV as measured with high-energy
neutral particle analyser and as calculated by TRANSP code [5], respectively. The magnitude
and the time evolution of the total neutron rate together with its radial profile as given by
PION agree with those measured as shown in Figs 2 and 3, respectively. Sensitivity analysis

of our results with respect to the input data will be presented elsewhere.
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Sauare foot of ormalized poloidal flux outlined in [6] and PION distribution functions calculated
Figure 3 The measured radial profile assuming n(*He)/ne=0.6% for three ICRF power levels in
of the neutron yield together with that AUG discharge 34704, plotted as a function of the *He ion
calculated by PION. energy projected along the CX line-of-sight at pp.1=0.3.

PION modelling of D-(He)-H scheme in AUG We have analysed two AUG discharges
with D-(*He)-H scheme [2] using the PION code. The first discharge was carried out at 2.8T
and 0.8MA with nu/(np+np) of 70-80% and n(*He)/ne of 0.5-1%. The ICRF frequency was
30MHz which placed the *He minority resonance off-axis at a normalized minor radius of r/a
~ 0.3 on the high field side in the region of enhanced |E+|* at the ion-ion hybrid resonance
layer of D and H ions. According to PION, about 85% of the ICRF power was absorbed by
3He ions, and the rest is damped by electrons. Figure 4 shows the measured CX intensity in
comparison with the predicted one, obtained using PION distribution functions assuming
n(*He)/ne = 0.6% plotted as a function of the *He ion energy along the CX line-of-sight, at
three ICRF power levels at the normalized minor radius of the ICRF resonance. For more
details on CX measurements and forward-modelling, see [6]. The forward-modelled CX
intensities depend strongly on the assumed n(*He)/ne; our results suggest that n(*He)/n. was
in the range of 0.4-0.6% at the ICRF resonance location. At more central radial locations, the
experimental CX intensities are somewhat stronger (not shown in Fig. 4), which is likely due
to the simplifications in the way PION takes into account the finite-orbit-width effects.
Wave-induced radial transport of resonant fast ions [7], which is not included in PION, may
also play a role.

The other AUG discharge with the D-(*He)-H scheme that we have analysed with PION is
discharge 34695 carried out at 3T and 0.8 MA using the ICRF frequency of 30 MHz and

dipole phasing. In this discharge the *He minority resonance coincided with the region of
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strong wave field in the vicinity of the ion-ion hybrid resonance layer located on-axis. A
50-ms long pulse of *He gas puffing was applied, which resulted in a sudden increase in the
3He concentration, with a concomintant increase of the sawtooth-free period and a decrease
of the measured fast ion losses as shown in Fig. 5. According to PION, the increase in the *He
concentration improved the confinement of ICRF-accelerated *He ions due to a decrease in
the power per resonant *He ion and, thereby, in their energy. The time-behaviour of the
measured fast ion losses follows that of the first orbit losses given by PION (c.f. Fig. 6).
Conclusions Despite its relatively simple physics model [3], PION reproduces the main
features observed in the experiments using three-ion ICRF schemes on JET and AUG. They
include strong ion cyclotron damping by third ion species despite their low concentration,
strong ICRF acceleration of resonant ions into the MeV range, and the dependence of
confined and lost resonant ions distribution functions on experimental parameters. The
results increase our confidence in using PION for predictive simulations of future
experiments using such schemes as those planned in the JET D-T campaign and ITER.
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Figure 5 Main parameters of AUG discharge jons as given by PION for AUG discharge 34695.
34695 heated with D-(*He)-H scheme. Measured fast ion losses (in a.u.) are also shown.
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