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Shear Alfvén wave (SAW) instabilities such as toroidal Alfvén modes (TAE) [1] are expected

to play important roles in magnetic confinement fusion devices as energetic particles (EPs)

contribute significantly to the total power density [2]. TAEs can be driven unstable by EPs,

and in turn, induce EP transport and degrade overall plasma confinement. In burning plasmas

of future reactors with EP characteristic orbit width much smaller than the minor radius, most

unstable TAEs are characterized by toroidal mode number n ∼ O(10). As a result, many TAEs

coexist and nonlinear mode couplings, e.g. ion induced scattering [3], as a potential channel for

TAE nonlinear saturation, are important for the qualitative and quantitative understanding of EP

confinement in future tokamaks.

The condition for TAE saturation via ion induced scattering can be satisfied in burning plas-

mas, since 1. there are many (∼ O(n2q)) TAEs with radially overlapping mode structures, 2.

TAE frequency is independent of the toroidal mode number and can be roughly estimated by

ω ∼VA/(2qR0) with the frequency deviation being ∼ O(εω), and 3. TAEs are characterized by

|k∥| ≃ 1/(2qR0) in the inertial (radially fast varying) layer where nonlinear coupling dominates.

In the scattering process, a pump TAE may decay into a counter-propagating TAE sideband and

an ion sound quasi-mode (ISW) with much lower frequency and k∥ ≃ 1/(qR0). The nonlinear

evolution depends sensitively on the thermal ion thermal to magnetic pressure ratio βi. In the

low βi limit with βi ≪ ε2, ion transit frequency is much smaller than TAE frequency gap width,

and the pump TAE decays into a TAE lower sideband and ISW daughter wave; while in the high

βi limit, the sideband is a propagating lower kinetic TAE (LKTAE) in the continuum. The low-

βi limit is investigated in great detail in Ref. [6], and, thus, in this work we focus on the high-βi

limit. Note that, ISW frequency is higher for Te ≫ Ti and, in this “high-β limit", resonant decay

into weakly ion Landau damped ISW is preferred. Thus, higher order terms associated with

ΩS can be neglected in the analysis. The present theory considers the short wavelength kinet-

ic regime, with ω/Ωci ≪ k2
⊥ρ2

i for burning plasmas of fusion interest, and the perpendicular

couplings due to Reynolds and Maxwell stresses dominate the parallel ponderomotive forced

induced by the b · δJ× δB nonlinearity. This will lead to a lower TAE saturation level and,

consequently, lower EP transport than the prediction based on MHD limit [3].
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The analysis presented here and in Ref. [6], derived for TAE, can be applied to other toroidal

Alfvén modes (TAMs), i.e., SAW instabilities in the TAE frequency range, strongly affected

by toroidal effects, including TAE, kinetic TAEs (KTAE), as well as energetic particle modes

(EPMs). As an example, in ITER plasma with Vα ∼ 2VA, upper KTAE (UKTAE) could be

preferentially excited, and decay into a TAE due to ion induced scattering, providing a potential

nonlinear saturation channel for UKTAE.

Theoretical model

To investigate the nonlinear decay of a pump TAE, Ω1 = (ω1, k1), decaying into a LKTAE,

Ω0 = (ω0, k0), and a low n ISW, ΩS = (ωS, kS), the standard nonlinear perturbation theory is

adopt. The scalar potential δϕ and parallel vector potential δA∥ are used as the field variables,

and one has, e.g., δϕ = δϕ0 + δϕ1 + δϕS, with the subscripts 0, 1 and S denoting LKTAE,

pump TAE and ISW, respectively. Furthermore, δψ ≡ ωδA∥/(ck∥) is taken as an alternative

field variable, and with δψ = δϕ in the ideal MHD limit. Without loss of generality, Ω0 =

Ω1 +ΩS is adopted as the frequency/wavenumber matching condition. For effective spectral

transfer by nonlinear ion Landau damping, we have |ωS| ∼ O(vit/qR0), i.e., the ISW frequency

is comparable to thermal ion transit frequency. Therefore, Ω0 and Ω1 are counter-propagating

(along the magnetic field line), with ω0 ≃ ω1 and k∥,0 ≃−k∥,1.

The governing equations describing the nonlinear interactions among Ω0, Ω1 and ΩS, can

then be derived from quasi-neutrality condition and nonlinear gyrokinetic vorticity equation [4],

while the nonadiabatic particle responses can be derived from nonlinear gyrokinetic equation

[5].

Nonlinear parametric instability

The nonlinear generation of ISW due to Ω0 and Ω1 beating can be derived to be

εSδϕS = i(Λ̂/ω0)σ0σ1δϕ0δϕ1∗ , (1)

where Λ̂ ≡ (c/B0)b̂ ·k0 ×k1∗ , εS ≡ 1+ τ + τΓSξSZ(ξS) is the linear dispersion function of ΩS,

with τ ≡ Te/Ti, ΓS ≡ ⟨J2
S F0/n0⟩, ξS ≡ ωS/(k∥,Svit) and Z(ξS) is the plasma dispersion function.

Furthermore, β1 ≡ σ0σ1 + τF̂1 (1+ξSZ(ξS)), with F̂1 ≡ ⟨J0J1JSF0/n0⟩, σk ≡ 1+ τ − τΓk.

The LKTAE polarization can be derived by substituting linear/nonlinear particle responses

of Ω0 into the quasi-neutrality condition, and one has δψ0 = σ0δϕ0 +D0δϕ1δϕS, with D0 ≡

iΛ̂τF̂1 [1+ξSZ(ξS)]/ω0. The nonlinear eigenmode equation of Ω0 can be derived from vorticity

equation as

ε̂0δϕ0 = i
ω0Λ̂
b0

(ΓS −Γ1)δϕ1δϕS. (2)
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Here, ε0 ≡ εT (Ω0) is the WKB linear dispersion relation of Ω0, with εT ≡ k2
∥,TV 2

A σT − (1−

ΓT )ω2
T/b̂T . The LKTAE eigenmode dispersion relation can then be derived noting the V 2

A ∝ 1−

2(r/R0 +∆′)cosθ dependence on poloidal angle θ with ∆′ being Shafranov shift, and properly

accounting for the kinetic effects.

Substituting equation (1) into (2), multiplying both sides of the obtained equation with Φ∗
0,

noting that εS varies much slower than |Φ0|2 and |Φ1|2 in radial direction, and integrating over

the radial domain, one then has

εSε̂0 =−⟨⟨σ0σ1Λ̂2(ΓS −Γ1)/b0⟩⟩|A1|2, , (3)

in which ε̂0 is the linear TAE eigenmode dispersion relation, defined as ε̂0 =
∫
|Φ0|2ε0dr, and

⟨⟨· · · ⟩⟩ ≡
∫

Φ2
0Φ2

1(· · ·)dr. Equation (3) is thus, the local nonlinear parametric dispersion rela-

tion, describing a pump TAE (Ω1) decay into LKTAE (Ω0) and ISW (ΩS) daughter waves,

which can be solved for the condition of Ω1 spontaneous decay.

The sideband Ω0 is a radially propagating LKTAE in the lower continuum, and ε̂0 can be

written as [7]

ε̂0 =−
πk2

θ ρ2
i ω2

A

22ξ̂+1b0Γ2(ξ̂ +1/2)

[
2
√

2Γ(ξ̂ +1/2)

α̂Γ(ξ̂ )
+δW f

]
.

Here, Γ(ξ̂ ) and Γ(ξ̂ +1/2) are Euler gamma functions, ξ̂ ≡ 1/4−Γ+Γ−/(4
√

Γ−ŝ2ρ̂2
K), Γ± ≡

ω2/ω2
A(1±ε0)−1/4, ω2

A ≡V 2
A/(q

2R2
0), α̂2 = 1/(2

√
Γ−ŝ2ρ̂2

K), ŝ≡ r∂rq/q is the magnetic shear,

δW f playing the role of a potential energy, and ρ̂2
K ≡ (k2

θ ρ2
i /2) [3/4+ τ(1− iδe)] denotes kinetic

effects associated with finite ion Larmor radii and electron Landau damping, including trapped

electron collisional damping.

Equation (3) can be solved following the standard procedure of resonant decay instabilities,

and yields

(γ + γ0)(γ + γS) =
(
⟨⟨σ0σ1Λ̂2(ΓS −Γ1)/b0⟩⟩|A1|2

)
/
(

∂ω0
¯̂E0,R∂ωS ĒS,R

)
. (4)

The selection rules for the decay mode number is determined by the short radial scale averaging

in equation (4).

Nonlinear saturation and EP transport

The resulting TAE saturation level, can be derived following the analysis of Ref. [7], where

TAE decay into GAM and LKTAE is analyzed. For the simplicity of discussion, consistent

with the approach above, we assume ΩS is weakly ion Landau damped. The equation for the

feedback of Ω0 and ΩS to the unstable pump TAE Ω1, is derived as

E1δϕ1 = i
ω1

b1
Λ̂(ΓS −Γ0)δϕ0δϕS∗ . (5)
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The three-wave nonlinear dynamic equations can then be derived as

(∂t + γS)AS = α̂SA0A1∗, (6)

(∂t + γ0)A0 = α̂0A1AS, (7)

(∂t − γ1)A1 = α̂1A0AS∗, (8)

with γ1 being the linear growth rate of the linearly unstable pump TAE due to, e.g., EP drive,

α̂S ≡
∫

drΦ0Φ1∗Λ̂σ0σ1/(ω0∂ωsĒS,R), α̂0 ≡ ω0
∫

dr|Φ0|2|Φ1|2drΛ̂(ΓS − Γ1)/(b0∂ω0
¯̂E0,R) and

α̂1 ≡ω1
∫

dr|Φ0|2|Φ1|2drΛ̂(ΓS−Γ0)/(b1∂ω1Ē1,R). The above coupled equations, describing the

nonlinear evolution of the driven-dissipative system, may exhibit rich dynamics such as limit-

cycle behaviors, period-doubling and route to chaos as possible indication of the existence of

strange attractors. In this work, focusing on TAE nonlinear saturation and related transport, the

TAE saturation level can then be estimated from the fixed point solution as |A1|2 = γ0γS/(α̂Sα̂0).

Note that, the present analysis, assuming ISW being weakly ion Landau damped, can be readily

generalized to ISW heavily ion Landau damped parameter regime, by taking γS ≃ vit/(qR0).

The corresponding magnetic fluctuation amplitude, can then be estimated in the b ≤ 1 limit,

and one obtains ∣∣∣∣δBr

B0

∣∣∣∣2 ≃ 2γ0γS

ω0ωS

ε2k2
∥,0

k2
θ ,1

∼ 6.5∗1010Am
γ0γS

ω0ωS
ε2R−2

0 B−2
0 TE . (9)

The TAE saturation level in the high-β limit, can be estimated as |δBr/B0| ∼ 10−4 for typical

ITER-like parameters, assuming γ0/ω0 ∼ 10−2 and γS/ωS ∼ 1. The corresponding EP diffusion

rate due to resonance overlapping can be derived using quasi-linear transport theory, and one

has the local diffusion coefficient of well circulating EPs being D ∼ 1m2/s. For obtaining the

particle flux, the global theory is needed, with the effects of radial envelope properly accounted

for; which will be reported in a future publication
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