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Local equilibrium model.
Magnetic equilibria are fundamental to most phenomena in tokamak plasmas, but accurate

numerical solutions of the Grad-Shafranov (GS) equation
—RV- (R7'VY) = uoR*p + FF' = —ipJy(R,'P), )

where W is the poloidal flux per radian such that B = V¢ x V¥ + By V¢, are not always the
best tool to gain analytical insight into such complex processes. Simplified local descriptions,
like the s — @ model with circular magnetic surfaces [2] are not able to capture plasma-shaping
effects. More elaborate models, like the Miller one [3], involve non-orthogonal coordinates and
non-trivial metric tensors, which results in intricate expressions for the magnetic-field compo-
nents. Therefore, they are unsuitable for analytically driven work on plasma-shaping effects.

A new approach intended to provide analytically tractable field components has been pre-
sented recently [1], which focus on a simple analytical description of the poloidal flux instead
of a detailed or intuitive description of the magnetic-surface shape. Using the poloidal cross sec-
tion coordinates {x = R/Ry, y = Z/Ry}, the flux normalised to its boundary value (y = ¥ /%)
can be written as a Solovev solution [4]
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where the local coefficients Sy, Sk, ¢;,¢; are assumed constant along flux surfaces, but allowed

to change slowly across them. Around each magnetic surface, the local approximation is valid
within a region Ay such that ‘Al//qu ! 8WJ¢| < 1. Up-down symmetric and asymmetric homo-
geneous solutions [4] enable a suitable description of the plasma shape. After changing to the
orthogonal coordinates {r=&~'\/(x— 1)2 42, 8 = atan(y/x) }, where & = a/Ry is the inverse
aspect ratio, the normalised flux becomes

Y(1,0) = Sor? @0 (6) +£r0; (6) + £2202(6) + - 3)
with the angular functions ®;(60) being defined as

®0(0) =1+ kcos20 + ksin20, ©;(0) = AcosO + ;ksin® + A cos36 + 7 sin 36,

8A—3k—3 2A+2A—k—1 4% — & S
= 32K + n+ g K cos26 + n Ksin29—|—f(cos49+}25in49.
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Figure 1: Left panel — Pressure, toroidal current density, and safety factor (a); fitted coefficients
(b); numerical magnetic surfaces [(c), lines] and analytical ones [(c), large dots]. Right panel —
HELENA equilibrium [(a), lines] and circular model [(a), large dots]; ¥ (b) and poloidal field (c)
on the midplane (HELENA, local, and circular models).

Equation (3) can be inverted for a given flux value, yielding the flux-surface parametrisation

_ 1 @1 - 5@% —4®0®2 ~2
r(0)=35 — £+ g+ |, 5)
(@é/ 2 205 80,/

where § = /y/Sp and & = €5. In turn, the conventional definitions p, A, and k [3] are recovered:

p_ 3§ e JIEE A &R At ©
a itk  V1-k a2 (1+%)>
The magnetic-field components are written as
By Sy O+ €rO; + €210 By So 200 + 3er®; +4€%20
B (r,0) = —r-Q 0N TEEITET D - go gy - SO0 R0 TEDTIE T D
R gy 1-H R Gy 1-H (7)

By (r.0) = BoRoy/ 1+ €2S4y(r. ),

with H = r? [(SOG)O) "+ 8r(So®1 ) '+ g2 (S()@z) /] the implicit radial dependence, Gy, = Boa? /Py,
and Sq a new local coefficient. The ability of the local model to describe realistic tokamak
plasmas is tested with a numerical equilibrium computed by HELENA [7] for typical ASDEX-
Upgrade parameters [1]. The results are plotted in figure 1.

Application 1: Straight-field coordinates and finite magnetic shear.
The coordinates {y, x, ¢}, where the poloidal angle x(r, 0) is defined such that

b? = q(y)b% = q(y)(b"d,x +b%9p%), (8)

with b = B/B the magnetic field-line versor, are a key element in MHD stability codes. For
shaped plasmas, ¢(y) must be expanded around a surface labelled by y; as

Cgitg () b= B (L) e gl L g di(y
ay) =ai+di(y =)+ = o (HE8+ ) £ =250k 2 =250 (1-wt). ©)
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The solution of equation (8) can thus be sought as a series in the small parameters &€, £, yielding

5. i(1—-%k)? .
x(r,0) :xO(G)(l —E&r l@o) —€&r————sin@+---,
K4®0 (10)
i K+(1—K)tan6 K . S
X0(0) = z [arctan = — arctan §], with K+Kk+K=1.

Discarding the shaping, the solution simplifies to y(r,0) = i(l —1& r2) 0 —1ersin@+-- -, which

can be further reduced to previous results [9] in the no-shear limit (§ = 0,7 = 1).

Application 2:Guiding-centre analytical orbits.
Besides energy and magnetic moment E, u (and thus A = uBy/E), the momentum

Py Mg ) By(r,0)
—qs¥p qs¥y | B<r79)

=Py =y(r,0)— (11)

is also a constant of motion in guiding-centre theory. Replacing y(r, 0), By (r,0), and B(r, 6) by
their corresponding series, a solution can be sought as a series 7o, (0) =r9(0) +€r(6)+--- by
recursively solving for each coefficient r;(6). Defining [ro (0) — rorn ()] /2 = Aoy and noticing
that [ror(0) + rorp ()] /2 = §+ - - -, the orbit for passing particles (f\p =1—A ~ 1) is written as

Forb(0) 1 _ 0O < cosb s Aob o ~¢ 4A0rb/~\p
— = —& + +- =—) S =4+ —F—. (12)
Ky @(1)/2 2@% 6p ®9 ap Ky So 8(1 —|—Ap)
v drift term

guiding terms
The lowest-order transit frequency is v /(GRo) [8] and shaping effects change it to

\/ﬁ .
_ V! (f;'()Jrﬁ(sZ,sg). (13)

gRo 1

0

In turn, the orbit for trapped particles [A; = (1 — A) /& ~ 1] is written as

1/2

"orb(e): 1 _é®1_ St;\t _|_~1/2 M+... 52:l 81/2:&
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and the shaping effect on the orbit’s tip is cos B, = —Aq [1 — (A=A k- A1 - A+ } .

Application 3: Geodesic curvature and MHD shear/acoustic continua coupling.

MHD perturbations & o< ¢/(@+m0+19) gplit in shear (n = & - I|;V><IZ|‘2P) and sonic ({ =V - &)

components that become singular at the pairs {y, @} (the MHD continua) for which

2 v 2
O |V¥|2+BoV) (VY 5) $B3K, n
VA 0 Vz VAV2 VH = 0’ (15)
Ks L+ 3+ 3BV (5) ] [¢

where k = (b- V)b and K; = 2B~2(k x B) - VP, while v4 and vg are the Alfvén and sonic
velocities [5]. The two continua branches are coupled by a non-vanishing geodesic curvature

K, whose harmonics produce frequency gaps proportional to their amplitude and to vi / vé ~B.
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Figure 2: Decoupled shear-Alfvén branch (m = m4) and three sonic waves near a rational sur-
face ng = m (a); Four-mode coupling by a single harmonic in K (b); Eight-mode coupling by
additional harmonics (c); Numerical continua and gap eigenmode (d).

1

For a circular equilibrium, Ky = €¢™ " sin0 and a four-wave coupling opens a low-frequency

gap [6]. On the other hand, finite plasma shaping yields
K,=- [(1 —3R)sin@ — ;ksin30 + 3Kkcos O + §Kkcos30 + - ] (16)

and additional gaps arise in the continua, at about half the TAE frequency, where discrete eigen-
modes can be found (figure 2).

In summary, a local equilibrium model was presented that is able to describe a realistic toka-
mak geometry and, simultaneously, able to allow tractable analytical work in a variety of con-

texts. Such analytical ability was illustrated with three particular examples.

Acknowledgments

IPEN activities were financially supported by “Fundacao para a Ciéncia e Tecnologia” (FCT)
via project UID/FIS/50010/2013. F. Cella was supported by FuseNet from the Euratom research
and training programme under grant agreement no. 633053.

References

[1] P. Rodrigues and A. Coroado, Nucl. Fusion 58. 106040 (2018).
[2] J. Connor et al., Phys. Rev. Lett., 40, 396 (1978).

[3] R. Miller et al., Phys. Plasmas §, 973 (1998).

[4] A. Cerfon and J. Freidberg, Phys. Plasmas 17, 032502 (2010).
[5] C. Cheng and M. Chance, Phys. Fluids 29, 3695 (1986).

[6] B. van der Holst et al., Phys. Plasmas 16, 032308 (2000).

[7] G. Huysmans et al., Int. J. Mod. Phys. C 2, 371 (1991).

[8] H. Wong et al., Nucl. Fusin 35, 1721 (1995).

[9] X. Lapillonne et al., Phys. Plasmas 16, 032308 (2009).



