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Local equilibrium model.
Magnetic equilibria are fundamental to most phenomena in tokamak plasmas, but accurate

numerical solutions of the Grad-Shafranov (GS) equation

−R∇ ·
(
R−1

∇Ψ
)
= µ0R2 p′+FF ′ =−µ0Jφ (R,Ψ), (1)

where Ψ is the poloidal flux per radian such that B = ∇φ ×∇Ψ+Bφ ∇φ , are not always the
best tool to gain analytical insight into such complex processes. Simplified local descriptions,
like the s−α model with circular magnetic surfaces [2] are not able to capture plasma-shaping
effects. More elaborate models, like the Miller one [3], involve non-orthogonal coordinates and
non-trivial metric tensors, which results in intricate expressions for the magnetic-field compo-
nents. Therefore, they are unsuitable for analytically driven work on plasma-shaping effects.

A new approach intended to provide analytically tractable field components has been pre-
sented recently [1], which focus on a simple analytical description of the poloidal flux instead
of a detailed or intuitive description of the magnetic-surface shape. Using the poloidal cross sec-
tion coordinates {x = R/R0, y = Z/R0}, the flux normalised to its boundary value (ψ = Ψ/Ψb)
can be written as a Solovev solution [4]

ψ =−1
8Spx4− 1

2SFx2 lnx︸ ︷︷ ︸
particular solution

+ ĉ0 +
4

∑
i=1

sym︷︸︸︷
ĉiψ̂

i
h+

asym︷︸︸︷
čiψ̌

i
h︸ ︷︷ ︸

homogeneous solution

, (2)

where the local coefficients Sp,SF, ĉi, či are assumed constant along flux surfaces, but allowed
to change slowly across them. Around each magnetic surface, the local approximation is valid
within a region ∆ψ such that

∣∣∆ψ J−1
φ

∂ψJφ

∣∣� 1. Up-down symmetric and asymmetric homo-
geneous solutions [4] enable a suitable description of the plasma shape. After changing to the
orthogonal coordinates {r = ε−1

√
(x−1)2 + y2, θ = atan(y/x)}, where ε = a/R0 is the inverse

aspect ratio, the normalised flux becomes

ψ(r,θ) = S0r2
[
Θ0(θ)+ εrΘ1(θ)+ ε

2r2
Θ2(θ)+ · · ·

]
, (3)

with the angular functions Θi(θ) being defined as

Θ0(θ) = 1+ κ̂ cos2θ + κ̌ sin2θ , Θ1(θ) = ∆̂cosθ + 1
4 κ̌ sinθ + η̂ cos3θ + η̌ sin3θ ,

Θ2(θ) =
8∆̂−3κ̂−3

32
+

2η̂ +2∆̂− κ̂−1
8

cos2θ +
4η̌− κ̌

16
sin2θ + χ̂ cos4θ + χ̌ sin4θ .

(4)
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Figure 1: Left panel — Pressure, toroidal current density, and safety factor (a); fitted coefficients
(b); numerical magnetic surfaces [(c), lines] and analytical ones [(c), large dots]. Right panel —
HELENA equilibrium [(a), lines] and circular model [(a), large dots]; ψ (b) and poloidal field (c)
on the midplane (HELENA, local, and circular models).

Equation (3) can be inverted for a given flux value, yielding the flux-surface parametrisation

r(θ) = s̃

(
1

Θ
1/2
0

− Θ1

2Θ2
0

ε̃ +
5Θ2

1−4Θ0Θ2

8Θ
7/2
0

ε̃
2 + · · ·

)
, (5)

where s̃=
√

ψ/S0 and ε̃ ≡ ε s̃. In turn, the conventional definitions ρ , ∆, and κ [3] are recovered:

ρ

a
≈ s̃√

1+ κ̂
, κ ≈

√
1+ κ̂

1− κ̂
,

∆

a
≈−ε s̃2

2
∆̂+ η̂(
1+ κ̂

)2 . (6)

The magnetic-field components are written as

Br(r,θ) =−r
B0

R
S0

q̃b

Θ̇0 + εrΘ̇1 + ε2r2Θ̇2

1−H
, Bθ (r,θ) =

B0

R
S0

q̃b

2Θ0 +3εrΘ1 +4ε2r2Θ2

1−H
,

Bφ (r,θ) = B0R0

√
1+ ε2Sdψ(r,θ),

(7)

with H = r2
[(

S0Θ0
)′
+εr

(
S0Θ1

)′
+ε2r2(S0Θ2

)′] the implicit radial dependence, q̃b =B0a2/Ψb,
and Sd a new local coefficient. The ability of the local model to describe realistic tokamak
plasmas is tested with a numerical equilibrium computed by HELENA [7] for typical ASDEX-
Upgrade parameters [1]. The results are plotted in figure 1.

Application 1: Straight-field coordinates and finite magnetic shear.
The coordinates {ψ,χ,φ}, where the poloidal angle χ(r,θ) is defined such that

bφ = q(ψ)bχ = q(ψ)
(
br

∂rχ +bθ
∂θ χ

)
, (8)

with b = B/B the magnetic field-line versor, are a key element in MHD stability codes. For
shaped plasmas, q(ψ) must be expanded around a surface labelled by ψi as

q(ψ) = qi +q′i
(
ψ−ψi

)
+ · · ·= q̃b

2S0

(1
ι̃
+ξ s̃2 + · · ·

)
, ξ = 2S0

q′i
qi
,

1
ι̃
= 2S0

qi

q̃b

(
1−ψi

q′i
qi

)
. (9)
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The solution of equation (8) can thus be sought as a series in the small parameters ε,ξ , yielding

χ(r,θ) = χ0(θ)
(

1−ξ r2
ι̃Θ0

)
− εr

ι̃(1− κ̂)2

κ̃4Θ0
sinθ + · · · ,

χ0(θ) =
ι̃

κ̃

[
arctan

κ̌ +(1− κ̂) tanθ

κ̃
− arctan

κ̌

κ̃

]
, with κ̃ + κ̂ + κ̌ = 1.

(10)

Discarding the shaping, the solution simplifies to χ(r,θ)= ι̃
(
1− ι̃ξ r2)θ− ι̃εr sinθ + · · · , which

can be further reduced to previous results [9] in the no-shear limit (ξ = 0, ι̃ = 1).

Application 2:Guiding-centre analytical orbits.
Besides energy and magnetic moment E,µ (and thus Λ = µB0/E), the momentum

Pφ

−qsΨb
≡ P̃φ = ψ(r,θ)− ms

qsΨb
v‖

Bφ (r,θ)
B(r,θ)

(11)

is also a constant of motion in guiding-centre theory. Replacing ψ(r,θ), Bφ (r,θ), and B(r,θ) by
their corresponding series, a solution can be sought as a series rorb(θ) = r0(θ)+εr1(θ)+ · · · by
recursively solving for each coefficient ri(θ). Defining [rorb(0)−rorb(π)]/2≡ ∆orb and noticing
that [rorb(0)+ rorb(π)]/2 = s̃+ · · · , the orbit for passing particles (Λ̃p ≡ 1−Λ∼ 1) is written as

rorb(θ)

s̃
=

1

Θ
1/2
0

− ε̃
Θ1

2Θ2
0︸ ︷︷ ︸

guiding terms

+ δ̃p
cosθ

Θ0︸ ︷︷ ︸
drift term

+ · · · , δ̃p ≡
∆orb

s̃
, s̃2 ≡

P̃φ

S0
+

4∆orbΛ̃p

ε
(
1+ Λ̃p

) . (12)

The lowest-order transit frequency is v‖/(q̃R0) [8] and shaping effects change it to

ωt =
v‖

q̃R0

√
1− (κ̂2 + κ̌2)

1− κ̂
+O(ε2, δ̃ 2

p ). (13)

In turn, the orbit for trapped particles [Λ̃t ≡ (1−Λ)/ε̃ ∼ 1] is written as

rorb(θ)

s̃
=

1

Θ
1/2
0

− ε̃Θ1

2Θ2
0︸ ︷︷ ︸

guiding terms

− δ̃tΛ̃t

2Θ
1/2
0

+ δ̃
1/2
t

√√√√cosθ + Λ̃tΘ
1/2
0

Θ
3/2
0︸ ︷︷ ︸

drift terms

+ · · · , s̃2≡
P̃φ

S0
, δ̃

1/2
t ≡ ∆orb

s̃
√

1+ Λ̃t
,

(14)
and the shaping effect on the orbit’s tip is cosθtip =−Λ̃t

[
1−
(1

2 − Λ̃2
t
)
κ̂− Λ̃t

√
1− Λ̃2

t κ̌ + · · ·
]
.

Application 3: Geodesic curvature and MHD shear/acoustic continua coupling.
MHD perturbations ξ ∝ ei(ωt+mθ+nφ) split in shear (η = ξ · B×∇Ψ

|∇ψ|2 ) and sonic (ζ = ∇ · ξ )
components that become singular at the pairs {ψ,ω} (the MHD continua) for whichω2

v2
A
|∇Ψ|2 +B0∇‖

(
|∇Ψ|2 ∇‖

B0

) v2
S

v2
A

B2
0Ks

Ks 1+ v2
S

v2
A
+

v2
S

ω2 B0∇‖
(∇‖

B0

)
η

ζ

= 0, (15)

where κ = (b ·∇)b and Ks = 2B−2(κ ×B) ·∇Ψ, while vA and vS are the Alfvén and sonic
velocities [5]. The two continua branches are coupled by a non-vanishing geodesic curvature
Ks, whose harmonics produce frequency gaps proportional to their amplitude and to v2

A/v2
S ∼ β .
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Figure 2: Decoupled shear-Alfvén branch (m = mA) and three sonic waves near a rational sur-
face nq = m (a); Four-mode coupling by a single harmonic in Ks (b); Eight-mode coupling by
additional harmonics (c); Numerical continua and gap eigenmode (d).

For a circular equilibrium, Ks = ε̃q−1 sinθ and a four-wave coupling opens a low-frequency
gap [6]. On the other hand, finite plasma shaping yields

Ks =
ε̃

q

[(
1− 3

4 κ̂
)

sinθ − 1
4 κ̂ sin3θ + 3

4 κ̌ cosθ + 1
4 κ̌ cos3θ + · · ·

]
(16)

and additional gaps arise in the continua, at about half the TAE frequency, where discrete eigen-
modes can be found (figure 2).

In summary, a local equilibrium model was presented that is able to describe a realistic toka-
mak geometry and, simultaneously, able to allow tractable analytical work in a variety of con-
texts. Such analytical ability was illustrated with three particular examples.
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