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1. Introduction - The problem of describing the evolution of the Reversed Field Pinch
(RFP) configuration in connection with the magnetic coils and their power supply circuits has
been tackled in the past in a number of papers, the notable ones being ref.s [1, 2]. Nevertheless
even if these start from clever and smart approaches, some mistakes are repeatedly present in the
derivations, giving rise to a number of more or less subtle problems in the model implementation
and inconsistencies in the final results. In this short paper a more rigorous derivation is obtained,
starting from fundamental electromagnetic laws. The RFP equilibrium of choice, can be then
inserted in the evolution equations only at a later stage of the derivation. This approach leads
to clean equations in explicit formulation, which can be used for immediate practical purposes
like the calculation of the dissipative loop voltage, or to be inserted directly in a SPICE circuit
simulator to predict the macroscopic behaviour of the RFP experimental discharges.

2. Internal, external and MHD equilibrium magnetic fields - At the essential the electrical
elements which define a plasma experiment consists of a bunch of distributed currents inside
the plasma producing the field B∗int and some arrays of field coils, producing the field Bext.
Obviously to describe a meaningful plasma the internal currents have to produce a field which
once combined with the external one, satisfies the MHD equilibrium equations. Because of the
linearity of the Ampère’s law, the total equilibrium MHD field BMHD comes up to be the sum
of internal and externally generated fields:

BMHD = B∗int +Bext. (1)

The basic method presented here is quite general, although the focus is on the simplified case
of a cylindrical axi-symmetric pinch plasma contained in a uniform toroidal coil, matching the
plasma surface. Using the standard procedure of refs.[1, 2], consider a plasma with radius a and
periodicity 2πR contained in a volume V , with right handed coordinate system (r,θ ,z) -a no-
tation resembling the usual pseudo-toroidal coordinates commonly used in pinch experiments-;
the plasma becomes separated from external systems at the boundary surface ∂V . Given this
representation, the Poynting’s theorem allows to identify the relevant electrical quantities linked
to the average magnetic and electric field at the boundary ∂V : ∂

∂ t
∫

V u dV +
∮

∂V S dA =−
∫

V J ·
E dV . Here u =

B2
MHD
2µ0

is the magnetic energy density and S = 1
µ0

E×B the Poynting vector,
which in the case of the cylindrical pinch is written as:

S = (Eθ Bz−EzBθ ) r̂ +(EzBr−ErBz) θ̂θθ +(ErBθ −Eθ Br) ẑ

Assuming negligible the integral contributions from spatial and radial fluctuations at the bound-
ary, its integral can be written as:∮

∂V
S dA =

1
µ0

(2πa ·2πR)(Eθ (a)Bz(a)−Ez(a)Bθ (a)) (2)
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Formula 2 outlines the four average integrals of the boundary electromagnetic field which in
turn define the four fundamental electrical variables measurable on pinch experiments:

plasma current Ipla =
2π a
µ0

Bθ (a) (3a)

toroidal loop voltage Vloop = 2π REz(a) (3b)

toroidal winding current Itor =
2π R
µ0

Bz(a) (3c)

poloidal loop voltage Vθ = 2π aEθ (a) (3d)

3. RFP two port network definition - Given the above quantities (eq. 3) the generic pinch
(and of course the RFP) can be seen as a generic two-port network (Fig. 1). It is worth noticing
that Itor corresponds to the total single turn poloidal currents flowing outside the plasma, while
Ipla results as the integral of the internal toroidal components of the current flowing inside the
plasma. The naming chosen here follows the engineers’ conventional jargon: in experimental
environment Itor corresponds to the sum of the poloidal currents flowing into the toroidal wind-
ings and passive structures, setting the average toroidal field applied at the edge of the plasma
Bt(a). This simple observation shows that the reversal of the RFP comes from the direction of
the externally applied current Itor, in contrast to the common jargon spread in the RFP commu-
nity (namely the plasma reverses the field): the reversal condition is the equilibrium response
of the plasma to an imposed value of the toroidal field at its edge and not an intrinsic property
of the plasma alone. Another remark pertains the fact that Itor and Ipla themselves do not carry
any information about the internal poloidal current distribution of the plasma Jθ , or equivalently
anything about the internal toroidal flux. This information is embedded in the plasma inductance
and in the mutual coupling coefficient, as will be outlined later on.

Ipla Itor

Vloop V
θRFP

Figure 1: Two-port network
representation of the RFP and its

relevant electrical quantities.

4. Explicit equation of the two-port network -
The two-port network equation constraining the evo-
lution of MHD equilibrium can be inferred by care-
fully analyzing the structure of the magnetic energy,
momentarily leaving out the dissipation. From the elec-
trical perspective the pinch plasma acts as a non-linear
transformer-like device, with some mutual coupling be-
tween the two ports. Recalling the expression for the
magnetic energy stored into a generic system of K mu-

tual coupled inductors Um
(

I
)
= 1

2

K
∑

i, j=1
IiLi jI j, the equation for the RFP two-port network reads:

Um = 1
2LpI2

pla +MItorIpla +
1
2LtI2

tor (4)

As with any other electrical device of this type, the plasma system has three separate con-
tributors to its magnetic energy: the internal magnetic field generated by plasma currents, the
externally applied field (uniform for the cylindrical RFP) and the coupling between these two.
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From the MHD configuration point of view the total magnetic energy Um is obviously:

Um =UMHD =
1

2µ0

∫
V

B2
MHD dV . (5)

The internal self-generated field produced by the currents flowing inside the plasma B∗ can be
simply found recalling eq. 1, by subtracting from the total MHD equilibrium field the externally
generated one: B∗ = BMHD−Bext. Now eq. 5 can be restated to recover the structure of eq. 4:

UMHD =
1

2µ0

∫
V

[
B∗2 +2(B∗·Bext)+B2

ext
]

dV. (6)

In the case of the cylindrical pinch the poloidal field is entirely generated by the currents inside
the plasma, so B∗

θ
(r) = Bθ (r). The internal generated toroidal field is instead obtained by sub-

tracting the externally applied one: B∗z (r) = Bz(r)−Bz ext(r); again because of the cylindrical
symmetry the field Bz ext(r) = Bz(a), in this case constant along r.

Now the inductances Lp, M and Lt can be obtained from the proper contribution of each
source. The plasma inductance Lp is readily defined from the first term of eq. 6: 1

2 LpI2
pla =

1
2µ0

∫
V
(

B2
θ
+B∗2z

)
dV : once the fields in this expression are normalized to the edge poloidal

field b∗(r) = B∗(r)
Bθ (a)

and the Ipla is eliminated by recalling eq.3a, the plasma inductance becomes
then correctly defined solely on the geometrical properties of the configuration:

Lp = µ0R
1
a2

∫ a

0

(
b2

θ (r)+b∗z
2(r)

)
rdr (7)

By comparison refs [1, 2] erroneously derive the plasma inductance directly from the total
energy of the equilibrium field UMHD.

The second term of eq. 6 corresponding to the coupling inductance M can be obtained with-
out explicit calculation of its integral, invoking the usual quantities used to identify the RFP
equilibria F = Bz(a)

〈Bz〉 and Θ = Bθ (a)
〈Bz〉 , which are defined as the ratio between the magnetic field

components at plasma boundary and the average axial field 〈Bz〉 = Φz
πa2 = 2

a2

∫ a
0 Bzrdr. The self

generated toroidal flux of the plasma Φ∗z = Φz−πa2Bz(a) [3] can be written in terms of these

quantities; since Bz(a) = F
Θ

Bp(a) = F
Θ

µ0Ipla
2πa , M becomes: M =

Φ∗z
Ipla

=
µ0a
2

(
1−F

Θ

)
(8). Here

M turns out to be the parameter which summarizes the RFP self organization properties: it links
the internal self-generated flux by the internal poloidal currents Jθ at a given plasma current
Ipla.

The last term Lt is simply the one of an ideal single turn inductor with the same dimensions of
the plasma, i.e. the "toroidal" vacuum inductance, independent on the presence of the plasma:

Lt =
µ0πa2

2πR
(9) . Finally the law governing the inductive voltages at the two-port network can

be laid down from Faraday-Lenz’s law, taking into account both voltage components induced
by the variation of the currents and the change of magnetic configuration:[

Vloop

Vpol

]
=

[
Lp M
M Lt

][
˙Ipla
˙Itor

]
+

[
L̇p Ṁ
Ṁ 0

][
Ipla

Itor

]
(10)

46th EPS Conference on Plasma Physics P1.1052



This formulation can be used by coupling this equation to any sort of MHD model or experimen-
tal measurements describing the evolution of plasma equilibrium, and by closing the boundary
condition with the appropriate external circuit elements. While this explicit formula can be di-
rectly inserted in electrical network solvers such as SPICE, the solution proposed in [2] results
in a implicit formulation, difficult to implement and prone to numerical instability [4]. Moreover
in ref.s [1, 2] the voltage evolution is incorrectly derived from the Poynting theorem, obtaining
an incomplete equation in the form V = Lİ + 1

2 L̇I, which omits the energy associated to the
mechanical work made by the magnetic field [5]. In the case of a plasma the neglected work
component corresponds to the energy associated to the shifting of magnetic tension (B ·∇)B.

5. Resistive loop voltage - The resistive loop voltage for RFP experiments can be retrieved
using the two port network evolution eq. 10 along with the Poynting theorem:

∂

∂ t

∫
V

u dV +
∮

∂V
S dA =−

∫
V

J ·E dV (11)

The ohmic dissipation term is recovered once the magnetic part of the Poynting theorem is
balanced. Since Itor does not pass through the plasma and cannot contribute to the dissipation,
in the right term of eq.11 only the terms containing Ipla survive: Vres is thus defined writing:
VresIpla =

∫
V J ·E dV (12). Putting togheter eq.s 10, 11 and 12, the dissipative loop voltage

equation for Vres finally reads: Vres =Vloop−
[
Lpİpla + L̇pIpla

]
−
[
Mİtor + ṀItor

]
(13). The

inductances Lp (7) and M (8) along with their time derivatives are to be obtained from the time
evolution of MHD equilibria reconstructed from experimental measurements.

Ipla Itor

Vloop V
θ

Figure 2: Complete electrical scheme of the two
port network RFP.

Eq. 13 is the correct one to quantify the
power balance during transient phases, such
as the discrete magnetic reconnections ob-
served in the RFP. Moreover it outlines the
internal structure of the two-port network in
its detailed electrical equivalent scheme (Fig.
2). It is worth to recall that the Poynting the-
orem as written in eq. 11 already includes in
the J ·E term the dissipation associated to the
viscous damping of the fluid components of
the plasma flow.
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