

Tritium-Concentration Requirements in the Fueling Lines for High-Q Operation in ITER

V. Gruber, E. Schuster

Lehigh University, Bethlehem, Pennsylvania, USA

Introduction

Tight regulation of the plasma temperature and density to produce a determined amount of fusion power while avoiding undesired transients is required for ITER to operate at $Q = 10$, where Q denotes the fusion power to external power ratio. To attain this goal, the ITER baseline will rely on three heating and current drive (H&CD) systems to supply external power and one pellet injection system (PIS) to provide deuterium (D) and tritium (T) refueling. The three H&CD systems provide 20 MW of electron cyclotron heating, 20 MW of ion cyclotron heating, and 33 MW of neutral beam injection [1]. The PIS consists of two pellet injectors that can fire 5 mm pellets ($\sim 6 \times 10^{20}$ atoms) at a maximum repetition rate of 16 Hz. The D injector and D-T injector supply, respectively, pellets that have a nominal concentration of 100% D and 10%D-90%T [2]. However, the concentration of T in the fueling lines may fall below its nominal value, particularly during long high- Q pulses. Along with the resulting burn-control challenges [3], this presents concerns over having adequate T refueling to maintain operation at desired states. Accounting for ITER's actuator limits and the T concentration of the pellets, the accessibility of steady-state, $Q = 10$ operation points is analyzed in this work. The results are determined over the density-temperature space and processed into Plasma Operation CONtour (POPCON) plots. Plasmas with different particle recycling and confinement conditions are compared.

The Plasma Model

The plasma is modeled by one-dimensional ion density (deuterium density n_D , tritium density n_T and alpha particle density n_α) and energy density (plasma temperature T) rate equations. The radial profiles of the particle densities are assumed to be flat. The radial profile of the temperature has the shape $T(\vec{r}, t) = T_0(t)[1 - (\phi/\phi_0)]^{\gamma_t}$, where T_0 is the central plasma temperature, ϕ is the toroidal magnetic flux coordinate (at the plasma edge $\phi = \phi_0$) and $\gamma_t = 1.85$ [4]. This assumed profile shape approximates the predicted profiles for ITER [5]. The volume average of the one-dimensional equations reduce them to a zero-dimension model given by

$$\frac{d}{dt}n_D = -\frac{n_D}{\tau_D} - n_D n_T \langle \sigma v \rangle_v + f_{eff} S_D^R + S_D, \quad (1)$$

$$\frac{d}{dt}n_T = -\frac{n_T}{\tau_T} - n_D n_T \langle \sigma v \rangle_v + f_{eff} S_T^R + S_T, \quad (2)$$

$$\frac{d}{dt}n_\alpha = -\frac{n_\alpha}{\tau_\alpha} + n_D n_T \langle \sigma v \rangle_v, \quad (3)$$

$$\begin{aligned} \frac{d}{dt} \left[\frac{3}{2} n_T \right] &= -\frac{3nT_0}{2(1+\gamma)\tau_E} + Q_\alpha n_D n_T \langle \sigma v \rangle_v + P_{aux} \\ &\quad + A_h Z_{eff} I_p^2 a^{-4} T_0^{-3/2} \left(1 + \frac{3\gamma}{2} \right) - A_b Z_{eff} n_e^2 \frac{T_0^{1/2}}{1+\gamma/2}, \end{aligned} \quad (4)$$

where P_{aux} is the external heating power, S_D and S_T are, respectively, the external fueling rates of deuterium and tritium, and $Q_\alpha = 3.52$ MeV is the energy deposited into the plasma from each fusion alpha particle. With T_0 expressed in keV, the ohmic heating power (P_{ohm}) and bremsstrahlung radiation power (P_{brem}) coefficients are, respectively, $A_h = 2.8 \times 10^{-15}$ MW/m³ and $A_b = 5.5 \times 10^{-43}$ MW/m³ [6].

In addition to the D, T and α ion species, the plasma is assumed to contain an impurity density n_I with atomic number Z_I . The quasi-neutrality condition, $n_e = n_D + n_T + 2n_\alpha + Z_I n_I$, defines the electron density. The effective atomic number and the total plasma density are $Z_{eff} = (n_D + n_T + 4n_\alpha + Z_I^2 n_I)/n_e$ and $n = n_D + n_T + n_\alpha + n_I + n_e$, respectively. The tritium fraction of the plasma is defined as $\gamma = n_T/(n_D + n_T)$. The fusion reactivity, $\langle \sigma v \rangle$, is determined by evaluating at T_0 the formulation found in [7]. To account for the radial temperature profile, $\langle \sigma v \rangle$ is multiplied by a correction factor, G , [4] to obtain its volume average, $\langle \sigma v \rangle_v$.

The IPB98(y,2) H-mode scaling law for the energy confinement time, τ_E , is,

$$\tau_E = 0.0562 H I_p^{0.93} R^{1.97} B^{0.15} M^{0.19} \epsilon^{0.58} \kappa^{0.78} n_e^{0.41} P_{total}^{-0.69}, \quad (5)$$

where H_H is the enhancement factor, $P_{total} = (Q_\alpha S_\alpha + P_{aux} - P_{brem} + P_{ohm}) \times V$ is the total plasma power in MW, and V is the plasma volume. The ITER values of the parameters in (5) are listed in [8]. The particle confinement times are $\tau_\alpha = k_\alpha \tau_E$, $\tau_D = k_D \tau_E$ and $\tau_T = k_T \tau_E$.

The recycling flux of deuterium and tritium from the reactor walls are modeled as,

$$\begin{aligned} S_D^R &= \frac{1}{1 - f_{ref}(1 - f_{eff})} \left\{ f_{ref} \frac{n_D}{\tau_D} + (1 - \gamma^{PFC}) \times \left[\frac{(1 - f_{ref}(1 - f_{eff})) R^{eff}}{1 - R^{eff}(1 - f_{eff})} - f_{ref} \right] \left(\frac{n_D}{\tau_D} + \frac{n_T}{\tau_T} \right) \right\}, \\ S_T^R &= \frac{1}{1 - f_{ref}(1 - f_{eff})} \left\{ f_{ref} \frac{n_T}{\tau_T} + \gamma^{PFC} \times \left[\frac{(1 - f_{ref}(1 - f_{eff})) R^{eff}}{1 - R^{eff}(1 - f_{eff})} - f_{ref} \right] \left(\frac{n_D}{\tau_D} + \frac{n_T}{\tau_T} \right) \right\}, \end{aligned}$$

where f_{eff} , f_{ref} , R^{eff} and γ^{PFC} are constants that define the quality of the recycling [9].

The L-H mode transition threshold power, expressed in MW, for a D-T plasma is given by $P_{thresh} = 4.3 M^{-1} B^{0.772} n_e^{0.782} R^{0.999} a^{0.975}$. The total plasma power must be above this threshold power for the plasma to be in H-mode [10]. The ratio of the fusion power to the power externally put into the plasma is $Q = E_{fus} n_D n_T \langle \sigma v \rangle_v / (P_{aux} + P_{ohm})$ where $E_{fus} = 17.6$ MeV.

The D-T pellet injector fuels the plasma at a rate of S_{DT}^{line} with pellets containing a tritium concentration of γ_{DT}^{line} . The D pellet injector fuels the plasma at a rate of S_D^{line} with pellets containing a tritium concentration of γ_D^{line} . Therefore, the external fueling rates, S_D and S_T , are formulated as,

$$S_D = (1 - \gamma_{DT}^{line})S_{DT}^{line} + (1 - \gamma_D^{line})S_D^{line}, \quad (6)$$

$$S_T = \gamma_{DT}^{line}S_{DT}^{line} + \gamma_D^{line}S_D^{line}. \quad (7)$$

POPCON Analysis Results

In the following analysis, the steady-state plasma conditions for $Q = 10$ operation are studied in the density-temperature space. The system of four equations (1)-(4) in steady-state ($d/dt = 0$) is solved for four unknowns. The unknowns are the alpha particle density fraction $f_\alpha = n_\alpha/n_e$, the external fueling rate of deuterium S_D , the external fueling rate of tritium S_T , and the impurity density fraction $f_I = n_I/n_e$. With $Q = 10$, the auxiliary power, P_{aux} , is determined from the expression for Q . The solution is found repeatedly over a grid of fixed n_e and T_0 values. All of the plasma conditions (i.e. τ_E) can be calculated from the four unknowns, the electron density and the central temperature. The resulting contour lines are plotted in the n_e - T_0 space.

The two scenarios discussed in this section consider only $Q = 10$ operation and the following fixed constants: $\gamma_D^{line} = 0$, $H_H = 1$, $\gamma = 0.5$, $Z_I = 10$ (Neon), $f_{ref} = 0.5$, $R_{eff} = 0.6$ and $\gamma^{PFC} = 0.5$. Fig. 1 shows the contours of constant auxiliary power for a plasma with recycling ($f_{eff} = 0.2$) and high particle confinement ($k_D = k_T = 1.2$, $k_\alpha = 1.6$). Fig. 2 shows the contours of constant fusion power for a plasma with no recycling ($f_{eff} = 0$) and low particle confinement ($k_D = k_T = k_\alpha = 1$). In both figures, multiple lines mark the saturation curves of the ITER actuators. The dashed-blue line marks where $P_{aux} = 0$. Below this line, the auxiliary power is negative and the results are physically meaningless. The solid-blue line denotes where $P_{aux} = 73$ MW. The yellow line marks where the D injector saturates at 16 Hz with $\gamma_{DT}^{line} = 90\%$. Where

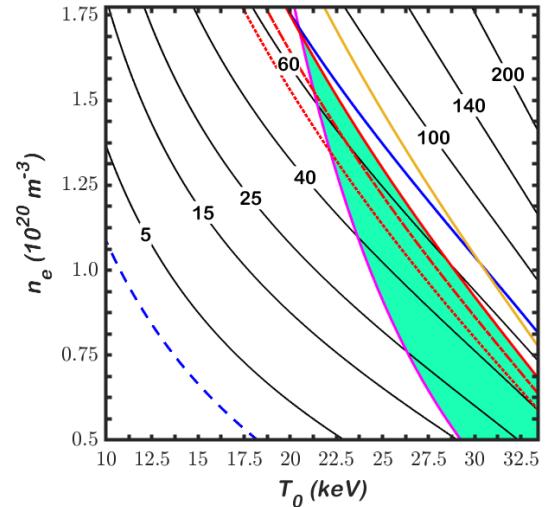


Figure 1: Results with auxiliary power [MW] isolines (black) for plasma with $k_D = k_T = 1.2$, $k_\alpha = 1.6$ and $f_{eff} = 0.2$.

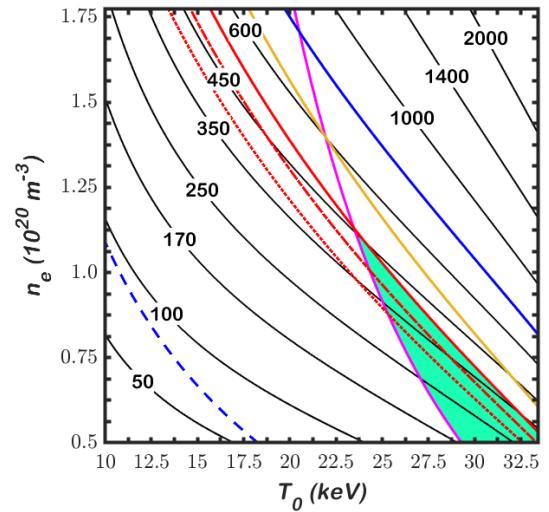


Figure 2: Results with fusion power [MW] isolines (black) for plasma with $k_D = k_T = k_\alpha = 1$ and $f_{eff} = 0$.

the D-T injector hits 16 Hz with $\gamma_{DT}^{line}=90\%$, $\gamma_{DT}^{line}=80\%$ and $\gamma_{DT}^{line}=70\%$ is plotted using the solid-red, dashed-dotted-red and dotted-red lines, respectively. On the magenta line, the total plasma power, P_{total} , equals the threshold power P_{thresh} (the plasma is in H-mode above this line). The green zone marks the steady-state operable space with $Q = 10$ for the given ITER plasma ($\gamma_{DT}^{line} = 90\%$). Here, the actuator saturation limits are not violated and the plasma is in H-mode.

Conclusions and Future Work

Due to enhanced confinement and recycling conditions, the plasma plotted in Fig. 1 has a much larger $Q = 10$ operable space than that plotted in Fig. 2. In both figures, the three red lines indicating D-T injector saturation (16 Hz) show how a decreasing T concentration (γ_{DT}^{line}) can shrink the $Q = 10$ operable space. The steady-state, $Q = 10$ operable spaces of the ITER plasmas depicted in Fig. 1 and Fig. 2 vanish when γ_{DT}^{line} drops below 30% and 60%, respectively. Future work may include extending this study to other Q conditions, studying sensitivity of the results, and applying this analysis to other burning reactors such as DEMO.

Acknowledgement

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Awards DE-SC0010661.

References

- [1] J.A. Snipes, D. Beltran, et al., "Actuator and diagnostic requirements of the ITER Plasma Control System," *Fusion Engineering and Design*, vol. 87, no. 12, pp. 1900-1906, 2012.
- [2] S. K. Combs, L. R. Baylor, et al., "Overview of recent developments in pellet injection for ITER," *Fusion Engineering and Design*, vol. 87, pp. 634-640, 2012.
- [3] A. Pajares and E. Schuster, "Robust Burn Control in ITER Under Deuterium-Tritium Concentration Variations in the Fueling Lines," *27th IAEA Fusion Energy Conference*, Gandhinagar, India, October 22-27, 2018.
- [4] J. J. Martinell and J. E. Vitela, "An Optimal Burn Regime in a Controlled Tokamak Fusion Power Plant," *IEEE Transactions on Plasma Science*, vol. 44, no. 3, pp. 296-305, 2016.
- [5] M. Shimada, A. Chudnovskii, et al., "Physics Design of ITER-FEAT," *J. Plasma Fusion Res.*, vol. 3, pp. 77-83, 2000.
- [6] W. M. Stacey, "Fusion: An introduction to the physics and technology of magnetic confinement fusion," Wiley-VHC, Weinheim, 2nd edition, 2010.
- [7] H. S. Bosch and G. M. Hale, "Improved formulas for fusion cross-sections and thermal reactivities," *Nucl. Fusion* vol. 32 pp. 611, 1992.
- [8] International Atomic Energy Agency, "Summary of the ITER Final Design Report," *ITER EDA Documentation Series*, no. 22, Vienna, 2001.
- [9] J. Ehrenberg, "Wall effects on particle recycling in tokamaks," in *Physical Processes of the Interaction of Fusion Plasmas with Solids*, p. 35, Academic Press, 1996.
- [10] Y. R. Martin, et al., "Power requirement for accessing the H-mode in ITER," *J. Phys.: Conf. Ser.* , vol. 123, no. 1, 2008.