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Introduction

Accurate prediction of turbulent transport fluxes is essential for interpretation of current-day

fusion experiments, designing future devices, and optimization of plasma scenarios. Turbulent

transport in the plasma core is well-described by quasilinear theory in extensive parameter

regimes, and is the basis of reduced transport models. Application of quasilinear transport

models, integrated within a tokamak simulation suite, are used to predict temperature, density,

and rotation profiles in fusion devices. Such an integrated model, with extensive validation on

JET plasmas in particular, is the QuaLiKiz quasilinear gyrokinetic transport model [1, 2], within

the JINTRAC tokamak simulation suite [3]. This combination is able to evolve plasma profiles

over a JET discharge timescale within a few days walltime, parallelized over 16 cores.

While fast enough for increasing our understanding of current experiments, and extrapolating

to future scenarios and devices, this workflow is too slow for high throughput demanding

applications, such as systematic scenario optimization, large-scale model validation, and

control-oriented modeling. The bottleneck in these simulations are usually the turbulent flux

predictions. To accelerate the modelling while minimizing the sacrifice of model accuracy, we

apply feed-forward neural networks (FFNNs) as a surrogate model. Once trained, the FFNN

can reproduce the underlying reduced model within tens of microseconds.

Training data generation

Neural networks are universal approximators and hence a powerful tool for regression [4]. In

this work we apply neural networks to a supervised regression problem, in which we reproduce

the input-output mapping of the QuaLiKiz code. We constrain the input space dimensionality

to a subset known to have a large impact on turbulent transport. These input dimensions include

the ion temperature gradient (R/LTi), electron temperature gradient (R/LTe), density gradient

(R/Ln), ion-electron temperature ratio (Ti/Te), safety factor (q), magnetic shear (ŝ), local inverse

aspect ratio (r/R), collisionality (ν∗), and effective charge (Ze f f ), with a carbon impurity and

deuterium main ion. This significantly extends a previous proof-of-principle 4D neural network

QuaLiKiz regression [5].
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A database consisting of 3× 108 QuaLiKiz input-flux relations was generated with HPC

resources, using 1.3 MCPUh. The database spans ion scales (kθ ρs ≤ 2) and electron scales

(kθ ρs > 2) and contains contributions to transport fluxes q, Γ, D, and V per species and per mode

(ETG/ITG/TEM). The input space was chosen as a rectangular, non-uniform 9-dimensional

grid. The bounds and spacing of the grid covers dimensionless parameter regimes typically

encountered in the core of standard aspect-ratio present-day tokamaks, and future devices such

as ITER and DEMO. See Table 1.

Physics-based neural network training

Regularized neural networks provide a smooth regression of supplied training data. It

does not assume any features of the underlying mapping. Physics-informed features can

be directly implemented into the training methodology to significantly improve the fidelity

of the surrogate transport model. For our application, the desired features are sharp flux

discontinuities at critical (temperature) gradients of the underlying instabilities, as well as an

identical critical gradient for all transport channels driven by a single (TEM/ITG) instability.

Table 1: 9D hyperrectangle bounds and

number of points of the QuaLiKiz neural

network training set.

variable # points min max

kθ ρs 18 0.1 36

− R
Te

dTe
dr 12 0 14

− R
Ti

dTi
dr 12 0 14

−R
n

dn
dr 12 -5 6

qx 10 0.66 15

ŝ 10 -1 5
r/R 8 0.03 0.33
Ti
Te

7 0.25 2.5

ν∗ 6 1×10−5 1

Ze f f 5 1 3

Total 3×108 ≈ 1.3MCPUh

Training targets

To avoid unphysical results in integrated modelling,

we forced identical critical thresholds for all transport

channels by a careful choice of training targets. These

were separated into a ’leading flux’ (ion heat flux

for ITG and electron heat flux for TEM/ETG) and,

then the ratio of the transport flux of interest, e.g.

qe/qi for ITG electron heat flux. The ratio-predicting

neural network is then multiplied with the leading flux,

forcing the prediction of the flux of interest to be at

exactly the same spot as the leading flux network.

Cost function

A neural network is a series of nested nonlinear

functions (e.g. a sigmoid or ReLU) linked with weights

and biases which are free parameters. Training a neural

network means optimizing the weights and biases of the network to minimize a cost function C,

which typical compares for each set of inputs, the neural network output to desired targets

- in our case the QuaLiKiz input-output mapping. Typically the cost function consists of

a measure of goodness-of-fit, and a regularizing term. For our training we only apply the
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measure of goodness-of-fit on the turbulent unstable fluxes, i.e. when the QuaLiKiz flux sample

QLKi 6= 0. This provides sharp transitions at thresholds. To then avoid any possible FFNN

extrapolation to non-zero fluxes in the stable region, we add an additional cost Cstab for samples

predicted to be stable by QuaLiKiz. Any negative heat fluxes (and associated particle fluxes)

predicted by the network are then clipped to zero in the transport code implementation. The

free parameters λregu, λstab, and Cstab, as well as other hyperparameters like network topology,

are then optimized using a simple grid search. To test generalization, the dataset is split in a

test set of 5% never seen during training, and a validation set of 5% used during training to

avoid overfitting on training data. The remainder is used as training set. So, for each network

prediction NNi we have for all n samples and k weights:

C =


1
n

n
∑

i=1
(QLKi−NNi)

2 +λregu
k
∑

i=1
w2

i , if QLKi 6= 0

λstab
n

(
n
∑

i=1
NNi− cstab

)
+λregu

k
∑

i=1
w2

i , if QLKi = 0
(1)

Rotation rule

To save computation time, the dataset was ran without rotation. We add rotation in

postprocessing using a rule based on new linear GENE scans[6] of q, ε , and ŝ. The rule

scales all ion-scale fluxes with frot(q, ŝ,ε)[6] and rotationless maximum growth rate γ0 which

is predicted by a NN based on the HPC-generated QuaLiKiz database. The rule includes both

E×B stabilisation and PVG destabilisation effects.

frotrule = c1q+ c2ŝ+ c3/ε− c4 (2)

frot = max(1+ frotruleγE/γ0,0) (3)

xi/e,IT G/T EM = frot ∗ xi/e,IT G/T EM (4)

Application in transport codes

The QuaLiKiz neural networks have been implemented in JINTRAC and RAPTOR[7, 8] as

the QLKNN10D transport model. First we compare the full QuaLiKiz versus QLKNN10D on

the high performance baseline JET shot #92436[9] in JINTRAC, shown in figure 1. The was run

from 10s to 12s. Comparison with experimental data is given by 1-sigma bounds of a Gaussian

Process fit. Correspondence between full-QuaLiKiz and QLKNN10D is close. The key point

is that the QLKNN10D run took only 0.5 CPUh on two cores, while the QuaLiKiz baseline

took 112 CPUh on 16 cores, where in the QLKNN10D case the transport model itself was no

longer the bottleneck. Remaining disagreements between full-QuaLiKiz and QLKNN10D are

due to the reduced feature space in the neural network training (e.g. impurity content), and to

the different way of treated rotation impact.
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Figure 1: JINTRAC simulations with QLKNN10D or full-QuaLiKiz

as the turbulence transport model of JET #92436 flattop after 2

seconds of simulation. For settings of the JINTRAC-QuaLiKiz run,

see Ref. [9]. Relative root mean square
√

∑
n
i=0(QLKi− ˆNNi)2

∑
n
i=0 QLK2

i
of Te = 2%,

Ti = 11%, ne = 12% for 0.212 < ρ < 0.85.

Finally, we show a simulation in

JINTRAC of

the high performance JET scenario

subject to DT extrapolation in

upcoming campaigns, #92398[10].

The QuaLiKiz simulation - run with

predictive particles but interpretive

momentum - took 5 CPUh on 16

cores, while the QLKNN9D run

took 420 CPUs on two cores. We

note again the excellent agreement

between the models in Figure 2.
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Figure 2: A time-dependent JINTRAC-QLKNN9D (no rotation)

simulation of JET #92398. Note the density buildup that is very well

captured by QLKNN. RRMS of Te = 4%, Ti = 5%, ne = 1% at ρ = 0.5

Conclusion

We have trained physics-based

neural networks

as turbulent transport models. We

have shown the application of such

a neural network as a surrogate

transport model within JINTRAC to

predict the temperature and density

evolution of JET fusion plasmas,

in excellent agreement with the

original QuaLiKiz model, yet up

to four orders of magnitude faster.

This allows us to simulate JET

plasmas at a speed that is unprecedented for first-principle based transport simulations, opening

up new avenues for tokamak scenario optimization and realtime control applications.
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