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Introduction

Accurate prediction of turbulent transport fluxes is essential for interpretation of current-day
fusion experiments, designing future devices, and optimization of plasma scenarios. Turbulent
transport in the plasma core is well-described by quasilinear theory in extensive parameter
regimes, and is the basis of reduced transport models. Application of quasilinear transport
models, integrated within a tokamak simulation suite, are used to predict temperature, density,
and rotation profiles in fusion devices. Such an integrated model, with extensive validation on
JET plasmas in particular, is the QuaLiKiz quasilinear gyrokinetic transport model [1, 2], within
the JINTRAC tokamak simulation suite [3]. This combination is able to evolve plasma profiles
over a JET discharge timescale within a few days walltime, parallelized over 16 cores.

While fast enough for increasing our understanding of current experiments, and extrapolating
to future scenarios and devices, this workflow is too slow for high throughput demanding
applications, such as systematic scenario optimization, large-scale model validation, and
control-oriented modeling. The bottleneck in these simulations are usually the turbulent flux
predictions. To accelerate the modelling while minimizing the sacrifice of model accuracy, we
apply feed-forward neural networks (FFNNs) as a surrogate model. Once trained, the FFNN

can reproduce the underlying reduced model within tens of microseconds.

Training data generation

Neural networks are universal approximators and hence a powerful tool for regression [4]. In
this work we apply neural networks to a supervised regression problem, in which we reproduce
the input-output mapping of the QuaLiKiz code. We constrain the input space dimensionality
to a subset known to have a large impact on turbulent transport. These input dimensions include
the ion temperature gradient (R/Lr;), electron temperature gradient (R/Lz,), density gradient
(R/L,), ion-electron temperature ratio (7;/T,), safety factor (¢), magnetic shear (), local inverse
aspect ratio (r/R), collisionality (v*), and effective charge (Zefr), with a carbon impurity and
deuterium main ion. This significantly extends a previous proof-of-principle 4D neural network

QualL.iKiz regression [5].
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A database consisting of 3 x 108 QuaLiKiz input-flux relations was generated with HPC
resources, using 1.3 MCPUh. The database spans ion scales (kgpy < 2) and electron scales
(kgps > 2) and contains contributions to transport fluxes ¢, I', D, and V per species and per mode
(ETG/ITG/TEM). The input space was chosen as a rectangular, non-uniform 9-dimensional
grid. The bounds and spacing of the grid covers dimensionless parameter regimes typically
encountered in the core of standard aspect-ratio present-day tokamaks, and future devices such

as ITER and DEMO. See Table 1.

Physics-based neural network training

Regularized neural networks provide a smooth regression of supplied training data. It
does not assume any features of the underlying mapping. Physics-informed features can
be directly implemented into the training methodology to significantly improve the fidelity
of the surrogate transport model. For our application, the desired features are sharp flux
discontinuities at critical (temperature) gradients of the underlying instabilities, as well as an
identical critical gradient for all transport channels driven by a single (TEM/ITG) instability.
Training targets

Table 1: 9D hyperrectangle bounds and

To avoid unphysical results in integrated modelling,
number of points of the QuaLiKiz neural

we forced identical critical thresholds for all transport .~ . .. g set.

channels by a careful choice of training targets. These

were separated into a ‘leading flux’ (ion heat flux _Variable #points mimn- max
for ITG and electron heat flux for TEM/ETG) and, KePs 18 0.1 36
then the ratio of the transport flux of interest, e.g. —#% 12 0 14
: g — £k 12 0 14

ge/qi for ITG electron heat flux. The ratio-predicting T dr

Rdn
. . . . . -1 12 -5 6

neural network is then multiplied with the leading flux, n dr
x 10 066 15
forcing the prediction of the flux of interest to be at P 10 1 5
exactly the same spot as the leading flux network. /R 8 0.03 033
Cost function 7 7 025 25
. . . v 6 1x1073 1

A neural network is a series of nested nonlinear

Zeff 5 1 3

functions (e.g. a sigmoid or ReLU) linked with weights
Total 3x10® =~ 1.3MCPUh

and biases which are free parameters. Training a neural
network means optimizing the weights and biases of the network to minimize a cost function C,
which typical compares for each set of inputs, the neural network output to desired targets
- in our case the QuaLiKiz input-output mapping. Typically the cost function consists of

a measure of goodness-of-fit, and a regularizing term. For our training we only apply the
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measure of goodness-of-fit on the turbulent unstable fluxes, i.e. when the QuaLiKiz flux sample
QLK; # 0. This provides sharp transitions at thresholds. To then avoid any possible FFNN
extrapolation to non-zero fluxes in the stable region, we add an additional cost C,, for samples
predicted to be stable by QuaLiKiz. Any negative heat fluxes (and associated particle fluxes)
predicted by the network are then clipped to zero in the transport code implementation. The
free parameters A,egu, Astap, and Cyqp, as well as other hyperparameters like network topology,
are then optimized using a simple grid search. To test generalization, the dataset is split in a
test set of 5% never seen during training, and a validation set of 5% used during training to
avoid overfitting on training data. The remainder is used as training set. So, for each network
prediction NN; we have for all n samples and k weights:
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Rotation rule

To save computation time, the dataset was ran without rotation. We add rotation in
postprocessing using a rule based on new linear GENE scans[6] of ¢, €, and §. The rule
scales all ion-scale fluxes with f,, (g, $, €)[6] and rotationless maximum growth rate ¥ which
is predicted by a NN based on the HPC-generated QuaLiKiz database. The rule includes both
E x B stabilisation and PVG destabilisation effects.

frotrulezclq+c2§+c3/£_c4 (2)
frot - max(l +fr0trule’}/E/'}/0>0) (3)
Xi/eTG/TEM = frot *Xi/e ITG/TEM 4)

Application in transport codes

The QuaLiKiz neural networks have been implemented in JINTRAC and RAPTOR[7, 8] as
the QLKNN10D transport model. First we compare the full QuaLiKiz versus QLKNN10D on
the high performance baseline JET shot #92436[9] in JINTRAC, shown in figure 1. The was run
from 10s to 12s. Comparison with experimental data is given by 1-sigma bounds of a Gaussian
Process fit. Correspondence between full-QualLiKiz and QLKNNI10D is close. The key point
is that the QLKNNI0D run took only 0.5 CPUh on two cores, while the QuaLiKiz baseline
took 112 CPUh on 16 cores, where in the QLKNNI10D case the transport model itself was no
longer the bottleneck. Remaining disagreements between full-QualLiKiz and QLKNNI10D are
due to the reduced feature space in the neural network training (e.g. impurity content), and to

the different way of treated rotation impact.
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Finally, we show a simulation in
JINTRAC of
the high performance JET scenario
subject to DT extrapolation in
upcoming campaigns, #92398[10].
The Qual.iKiz simulation - run with
predictive particles but interpretive
momentum - took 5CPUh on 16
cores, while the QLKNNOD run
took 420 CPUs on two cores. We
note again the excellent agreement

between the models in Figure 2.

Conclusion

We have trained physics-based
neural networks
as turbulent transport models. We
have shown the application of such
a neural network as a surrogate
transport model within JINTRAC to
predict the temperature and density
evolution of JET fusion plasmas,
in excellent agreement with the
original QuaLiKiz model, yet up
to four orders of magnitude faster.

This allows us to simulate JET
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Figure 1: JINTRAC simulations with QLKNNI10D or full-QuaLiKiz
as the turbulence transport model of JET #92436 flattop after 2
seconds of simulation. For settings of the JINTRAC-QuaLiKiz run,
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Figure 2: A time-dependent JINTRAC-QLKNN9D (no rotation)
simulation of JET #92398. Note the density buildup that is very well
captured by QLKNN. RRMS of T, = 4%, T; = 5%, n, = 1% at p = 0.5

plasmas at a speed that is unprecedented for first-principle based transport simulations, opening

up new avenues for tokamak scenario optimization and realtime control applications.
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