
Generation of few- and subcycle radiation at combination frequencies 

of ultrashort multicolor ionizing laser pulse 

V. A. Kostin1,2, N. V. Vvedenskii1,2 

1Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia 

2University of Nizhny Novgorod, Nizhny Novgorod, Russia 

The ionization of a medium by strong femtosecond two-color pulses attracts steadily 

growing interest associated with accompanying generation of secondary electromagnetic radi-

ation. The generation is particularly manifested around various combination frequencies 

(CFs) of the two-color pump in different frequency ranges, from terahertz to the deep-

ultraviolet. In the last two decades the most attention was given to the two-color laser-plasma 

generation of terahertz waves where the associated combination frequency is small enough or 

zero. The considerable success was achieved in obtaining strong and broadband terahertz ra-

diation [1, 2] as well as in exploring various ways to tailor the two-color scheme. These ways 

include manipulating polarizations and frequencies of the one-color components of the ioniz-

ing pump, pump focusing and properties of the ionized medium: state of matter, pressure, and 

kind of ionized particles [1–6]. Recently, an advance was made from terahertz to the neigh-

boring mid-infrared range with incommensurate two-color pulses employed, opening a way to 

generate few- and subcycle pulses tunable over the whole mid-infrared range [3, 7–9]. Some 

works also consider the higher CFs in visible and even ultraviolet range where the generation 

of tunable high-quality extremely short pulses was demonstrated [9–11]. However, such ioni-

zation-induced wavemixing leading to generation at higher CFs remains mostly unexplored as 

compared to the terahertz generation. 

In this work, we present an analytical approach that should facilitate study of the ioni-

zation-induced wavemixing. This approach allows one to calculate radiating currents generat-

ed by ionizing two-color femtosecond pulse at CFs for arbitrary polarizations and ratios be-

tween intensities of one-color pump components. The method is based on the decomposition 

of ionization rate over quasimonochromatic components at various CFs and describes the ex-

citation of electron current at any CF in a unified way (regardless of the particular frequency 

range). Using this ionization rate decomposition method, one can find the slow envelope of 

the current component at some CF as dependent on parameters of the ionizing two-color 

pump: intensities, polarizations, durations, and chirps of its one-color components as well as 

the phase and group shifts between one-color components. Knowing these dependences, one 

can simplify electrodynamical program codes or estimate analytically the conversion efficien-
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cy in some focusing models (for example, for short microplasmas from tightly focused pumps 

or for long quasi-uniform plasma columns from axicon-focused pumps). 

Let us consider the two-color ionizing field )()()( 10 ttt EEE  , where )(1,0 tE  

ti
et 1,0)(Re 1,0


 A  are the one-color components of the two-color pump, )(1,0 tA  and 1,0  are 

their slow complex amplitudes and frequencies, respectively. In the tunnel ionization regime, 

electrons transfer from bound to continuum state quickly enough, and one can introduce the 

ionization probability per unit time, w , which is determined by the instantaneous field value. 

For the strong-field ionization of a common gas of non-aligned molecules, the ionization 

probability w  does not depend on the direction of the electric field and can be written as a 

function of the field magnitude,  Eww  . The electric field squared 2E  can be represented 

as superposition of a slow component and components at frequencies 1,02  and 10   , 
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 10arg AA  ,    10arg AA  are the parameters characterizing phase and polarization 

structure of the field (the ‘mutual polarization’), and t0  , t1  . 

The ionization probability  Ew  is 2-periodic with respect to   and  . This allows 

one to decompose w  into the double Fourier series, 
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where 10    are the CFs and w  are the time-dependent Fourier coefficients; 
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for even   , 10    . Despite the cumbersome look, the above integrals can be 

evaluated to closed-form expressions for common steep dependences  Ew  in virtually any 
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reasonable particular case. Here, we give formulas for the most important cases of (i) parallel 

linear polarizations, xA ˆ1,0
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for even indices, 0W  for odd ones, and (iii) coplanar circular polarizations, 
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0W  for 0   with the upper and lower sings corresponding to the co- and counter-

rotating polarizations, respectively. In these formulas, )(zIk  denotes the modified Bessel 

function; x̂  and ŷ  are the orthogonal unit vectors; 1,0M  are the field amplitudes; and 

1)()(  EwEEwn  is characteristic nonlinearity order (number of mixed waves) with 

10 MME   for the first and third cases, and 2

1

2

0 MME   for the second one. 

Note that expansion (1) is exact and does not impose any constraints on the complex 

amplitudes )(1,0 tA  (aside from obvious finiteness). That said, this expansion fits naturally 

with slow enough amplitudes )(1,0 tA  in the time scale of the ionization duration i  (i.e., char-

acteristic time of plasma creation) when the coefficients )(tw  depend smoothly on time and 

each term in sum (1) presents a harmonic at some CF. In this case, the expansion (1) over var-

ious CFs can be used to analyze spectral composition of plasma density )(tN  and free-

electron current density )(tj . To that end, one should substitute the expansion (1) into com-

monly used equations 
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where mN  is the initial density of neutral particles, eq  is the elementary charge, and em  is the 

electron mass. In accordance with Eqs. (2), the electron current density can be also decom-

posed as a superposition of harmonics at CFs, 
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where abF  are the complex amplitudes of these harmonics. For a  and b  with ,,1 ba  
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time-averaged plasma density and ionization probability, babaab WWU ,1,1

)(



  , )(

abV  

1,1,   baba WW . The resulting expressions for abF  and abG  can be now used for analyzing 

generation of CFs in various situations. For short radiating plasmas (microplasmas), which 

can be obtained from tightly focused pumps, one can use dipole approximation from plasma 

object of subwavelength size and critical density and obtain the efficiency estimate 

   iiiabfab tPt  4~
22

G  for pump conversion into CF ab , where it  is the time moment 

when the tN   is at maximum,     ttNN imif   2  is the final ionization degree 

(for i  defines as in [9]),  is the pump duration. The resulting efficiency estimate is rather 

convenient for comparison of different pump frequencies, polarizations, and intensities. 
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