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Abstract 

Our present understanding of the pedestal physics is still limited and its extrapolation to 

future JET-ILW experimental scenarios is a challenging task. To face this issue a new 

multi-objective genetic programming (GP) code has been implemented. This code is able to 

perform a multi-objective symbolic regression analysis on the EUROfusion JET-ILW 

pedestal database [1]. In order to improve our understanding of the obtained analytical 

expressions and to make easier the comparison with established results in power law form, 

we drive the GP search towards a class of scaling laws called generalized power laws. 

Possible new analytical nonlinear regression models for the pedestal thermal stored energy 

has been found. These results suggest that some of the new scaling laws might capture 

interesting experimental features that otherwise it would not be possible to obtain with 

ordinary power laws.  

Introduction 

The EPED model [2] can predict the H-mode JET-ILW pedestal within a relative error of 

about 20% when the pedestal is close to the Peeling-Ballooning (PB) boundary. However, 

when the pedestal is far from the PB boundary, our present understanding of the pedestal 

physics is still lacking [3,4]. Moreover, the extrapolation to future JET-ILW experimental 

scenarios and to different tokamaks is even more challenging.  

In order to improve our modelling capabilities of the JET-ILW pedestal, a new 

multi-objective genetic programming (GP) [5] code has been implemented. GP is an 

evolutionary search algorithm inspired by natural evolution which encodes a solution to a 

problem as a computer program. When the instruction set used to build new solutions is made 

of mathematical functions only, GP becomes an instance of symbolic regression (SR) [5,6]. 

SR is a non-parametric nonlinear regression technique where, not only the model’s 

parameters are fitted to the data, but also the regression model is selected in a data-driven 

way. Symbolic regression via GP (GPSR) is a powerful technique particularly suited to 
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discover nonlinear models with interaction, saturation and threshold effects, i.e. just the class 

of models we expect to be useful to describe the pedestal scaling. 

In nuclear fusion it is very common the use of scaling laws in power law form. Power laws 

has been used successfully for the pedestal stored energy [1,7] even if there is no theoretical 

reason to assume a priori this kind of scaling. Reasons of their popularity are their extreme 

simplicity, their scale invariance and the availability of a simple fitting tool like 

log-regression. However, power laws present important limitations [6]. They are monotonic 

functions of their explanatory variables, thus they cannot describe common phenomena in 

plasma physics such as saturation and threshold effects. Moreover, the interaction among 

physical quantities is only multiplicative. Nevertheless, the use of power laws is well 

established and it is not reasonable to derive new scaling laws without a clear comparison 

with them. Thus, in order to improve our understanding of analytical expressions obtained by 

GPSR and to make easier the comparison with already established results in power law form, 

a novel SR methodology has been derived here. By this method we constrain the GP search in 

finding solutions in the form of generalized power laws, where exponents can be functions of 

explanatory variables. 

Methods 

In this work we look for meaningful and nontrivial data-driven analytical regression models 

for the thermal stored energy calculated using profiles evaluated at normalized poloidal flux 

coordinate ψN = 0.9, hereafter called W90, as defined in the EUROfusion JET-ILW pedestal 

database [1]. Accordingly, we selected a subset of parameters of the pedestal database 

typically used in W90 scalings: plasma current (Ip), NBI power (PNBI), toroidal magnetic field 

(B), electron line-averaged density (ne), average triangularity (δ), effective mass (Meff). We 

also included the gas flow rate of main species (Γ) as it is known that the gas fuelling affects 

the pedestal height. We log-transformat the dataset and then split it in two: training set (594 

records) and validation set (394 records).  

The multi-objective GP (MOGP) code here developed performs a multi-objective SR 

analysis on the dataset, finding regression models for W90. Different analytical expressions 

and different sets of input decision variables are tested during the GPSR run. The 

multi-objective search in the model space is performed minimizing two objectives: the model 

complexity (the solution length) and the fraction of variance unexplained by the model 

(1-R2). These are two conflicting objectives and a trade-off among them must be found. The 

Pareto dominance criterion [8] is used as a model selection criterion during the GPSR run: a 
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model is said to Pareto dominate another solution in the GP population if it is at least equal in 

both objectives to that solution and better in at least one objective. Thus, the MOGP code 

looks for a final set of non-dominated solutions, i.e. the Pareto set of the objective space. The 

minimization of the model complexity can be useful to avoid overfitting and can be 

considered as an implementation of the Occam’s razor principle. Moreover, all evolved 

models are tested on a validation set to measure their generalization capabilities.  

A combined search strategy is performed, implementing the concept known as Baldwin 

effect [9]. A global search is made by GP in the model space looking for the best analytical 

shape of the regression model and, when the selected model must be evaluated, a local search 

is performed in the model’s parameter space: the model is fully parametrized and the 

numerical values of its parameters are determined by standard nonlinear least square 

regression methods. 

Among all possible models that can be derived by GPSR, we limited the GP search space to a 

general class of power laws, called generalized power laws, where exponents can be 

functions of explanatory variables. In a first stage of the SR analysis, we limit the function set 

to linear functions, allowing the derivation of simpler expressions. In a second stage, 

interesting solutions from the previous stage are used to seed a new GPSR run and the 

function set is extended to nonlinear functions.  In this way, even if we introduce nonlinear 

functions and allow more complex interactions among physical quantities, the model 

complexity is taken under control avoiding overly complex models since the very beginning 

of the GP search and keeping our solutions in power law form. 

Results and Conclusions 

In the first stage of SR analysis, the function set is limited to simple arithmetic operators 

{+,-,*}. In Figure 1 it is reported the final Pareto set (red points) computed aggregating 

solutions from 4 GPSR runs. We also consider as a reference solution that one obtained by a 

GPSR run with the same GP settings but with a simpler function set {+,-}. This solution 

encodes the standard power law that can be obtained by an ordinary least square method 

when all the explanatory variable are considered. To select a final pool of solutions from the 

Pareto set, we consider only those solutions that Pareto dominate the reference solution 

(green points) and one of them is selected (Figure 1). This solution is interesting because the 

exponent of triangularity is a decreasing function with plasma current while W90 is still an 

increasing function with plasma current due to the strong correlation among ne and Ip. This 

scaling seems to be consistent with the experimental JET-ILW results where, so far, the high 
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triangularity has led to a pedestal pressure improvement mainly at low Ip [10]. However, if 

we look at the residual plot of this regression model, we discover that this fit is less reliable 

when the plasma current is greater than 2.6 MA because there are few records in the database 

with high plasma currents. Nonetheless, the accuracy of the fit is good (R2 ≈ 0.85) and it is 

comparable with that one from a standard power law fit [1]. In the second stage of this SR 

analysis, we use the previous selected solution to seed a new SRGP run with a richer function 

set {+,-,*,Exp,Sigmoid} and a weighted sum of squared residuals as fitness function, with 

higher weights for higher plasma currents. We obtained a final Pareto set made of solutions 

that are variations of the initial solution and more accurate for Ip ≥ 2.6 MA. As an example, 

we examine here an interesting solution (R2 ≈ 0.86) where the isotopic mass has an effect on 

W90 (Figure 2). If we remove the sigmoid function present in this solution, the fit is 

completely lost, demonstrating it is relevance. Moreover, if we consider W90 as a function of 

Meff only (using the correlation matrix), we get a figure qualitatively similar to measurements 

[11]. This type of dependence cannot be obtained with a standard power law (Figure 2).  

In conclusion, this SR analysis suggests that in the future it might be possible to find accurate 

and interpretative models for the pedestal stored energy using a small function set and simple 

model selection criteria and, at the same time, to take under control the model complexity. 

        
   Figure 1 – Pareto front computed over 4 GPSR runs           Figure 2 – Isotopic mass effect on W90 scaling      
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