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Advances in main-ion (D+) charge exchange spectroscopy (MICER) [1, 2] have enabled
direct measurements of the deuterium properties in the pedestal region on DIII-D revealing
clear differences between the temperatures of D+ and the more commonly measured C6+
impurity ions approaching the separatrix. Detailed thermal transport analysis is performed for
a DIII-D ITER baseline H-mode discharge using these measurements, which play an
important role in the inferred ion and electron heat fluxes due to the large ion-electron
collisional exchange term approaching the separatrix. The combination of MICER
measurements and the radial electric field inferred using impurity CER [3] allow the
components of the D+ force balance and poloidal rotation to be calculated. We find that for
the ITER baseline case the thermal transport is approximately at the neoclassical level outside
the pedestal top, while the D+ poloidal rotation is significantly larger than predicted by local

neoclassical theory.
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observed temperatures has been | Figure 1: The electron, main-ion and impurity ion
. . . temperatures. Both ion temperatures have been
included leading to a reduction of the | corrected for Zeeman and fine structure broadening.

C6+ temperature by approximately

65eV at the edge for these conditions and having negligible effect on the D+ measurement.
There is some uncertainty in the exact magnitude of this correction due to the assumption of

statistically populated upper levels. Inside the top of the pedestal (p<0.94, p=sqrt(normalized
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toroidal flux)) this correction brings the temperatures of the two ion species into close
agreement (compare with Fig. 5b in [5] which does not have this correction applied). This is
expected based on the rapid equilibration time between the two species (10s of microseconds)
compared with the radial transport time scale (~ms). However, contrary to expectations, for
p>0.94 the impurity temperature diverges from the D+ and e- values, and in some cases starts
increasing very near or outside the separatrix. This type of behavior is commonly seen in

these profiles on DIII-D.
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their larger velocities. The similarity between
these timescales means that these orbits can be completed without the non-local C6+
equilibrating with the D+, providing a possible explanation for the elevated impurity
temperatures. Similar elevated temperatures were found using XGCO for a QH-mode case [6].
The same argument could be made for D+; however, the main ion density gradient is typically
not as sharp as the impurities, so the presence of a significant local D+ population may
prevent the non-local tail ions from dominating the measurement to the same extent. This
effect may contribute to the difference between the D+ and electron temperature approaching

the separatrix.
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In order to understand the processes responsible for driving thermal transport in the pedestal

region, theory predictions must be compared with ion thermal transport calculated using the

time histories of the profiles along with the :
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sources and sinks. Figure 2 shows the volume g
integrated ion and electron heat fluxes and the w2
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term becomes large near the edge due to the | sing the D+ temperature measurements and
temperature differences and the low electron predictions using the NCLASS code.

temperature. This ultimately leads to a negative ion heat flux through the pedestal region
which seems implausible. However, when the same calculation is performed using the
measured D+ profile (Fig 2b), a more plausible positive heat flux is calculated. The impact of

the impurities on the ion thermal transport is not included here.

Using the calculated ion heat flux in Fig 2b, it is possible to also extract an inferred effective
ion thermal diffusivity (y;) from TRANSP and compare the value with expectations based on
neoclassical theory using the NCLASS code (Fig 3). Inside the pedestal top, the experimental
diffusion is significantly larger than the neoclassical level, as expected due to turbulent
transport. In the pedestal region, the transport is approximately at the neoclassical level for
this case. Historical issues such as negative ion heat fluxes have meant that pedestal ion
thermal transport analysis on DIII-D has been quite limited. In [7], approximately neoclassical
xi was found in an H-mode case and in [8] reasonable agreement with ITG based transport
was found early in the H-mode phase and experimental values above both ITG and
neoclassical y; estimates later in the H-mode phase. In both cases impurity measurements
were used. Detailed modeling of a QH-mode discharge using the XGCO code also showed
that the thermal transport was at the neoclassical level when extended neoclassical effects
such as neutrals, non-locality, and non-Maxwellian distribution functions are included [6]. A
significant amount of work has been performed on ASDEX Upgrade in this area using either
impurity temperature measurements or main-ion measurements in helium plasma with the
general finding that the pedestal ion thermal transport is neoclassical across a range of

collisionalities [9] without having to invoke extended neoclassical transport effects.
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Figure 4: Components of force balance for the
impurities (a) and the main ions (b)

The combination of impurity CER and MICER
allows the main-ion poloidal rotation to be
force balance:

inferred based on
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diamagnetic  direction. This value is

significantly larger than expectations based on
neoclassical theory, which are typically on the
order of 1-2km/s due to strong damping.

Similar large main-ion poloidal rotations have been observed in DIII-D He plasmas [10] but

not on ASDEX upgrade [11]. A possible explanation for the rapid rotation is the role of

neutrals [12] which are not included in standard neoclassical calculations.
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