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Abstract: Gyro-fluid equations are velocity space moments of the gyrokinetic equation. The
damping due to kinetic resonances is included through a closure scheme chosen to match the
collisionless density response functions. This damping allows for accurate linear eigenmodes
to be computed, even in the collisionless limit, with a relatively low number of velocity space
moments compared to gyrokinetic codes. The standard methods [1, 2] use the truncated
moments to close the system of equations. An analysis of the gyro-fluid closure schemes will
be presented that demonstrates a number of problems with the standard method. In particular,
the Onsager symmetries [3] of the resulting quasilinear fluxes are not preserved. Onsager
symmetry guarantees that the matrix of diffusivities is positive definite, an important property
for a transport model. The constraints on the closure due to Onsager symmetry and other
considerations are shown to be very restrictive. A new, simpler scheme for including the
kinetic damping is found that preserves the Onsager symmetry and is scalable to higher
velocity space moments without change of the damping model. Linear eigenmodes from the
new system of equations are compared with gyrokinetic results, with and without collisions,
including parallel and perpendicular electromagnetic fluctuations at high beta. The new
system of gyro-fluid equations will be used to extend the TGLF quasilinear transport model
[4] so that it can compute the energy and momentum fluxes due to parallel magnetic
fluctuations, completing the transport matrix. The Onsager symmetries will enable faster
transport solvers since the matrix of convection and diffusion coefficients will all be
computed by a single call to the quasilinear transport model.

Advantage of the response matrix flux form
Consider the following "response matrix" form of the heat flux Q= —n( X+ X”‘"’)dT /dr.

neo

The first term is the neoclassical thermal diffusivity x"° which is independent of the

gradients. The second term is the due to turbulence and is a non-linear function of the
2
gradients. For example, the turbulence terms could be x"” = Xé“’b / (1+cI (yExB / 7’0) ) where

the ExB velocity shear is taken to be 1
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different values of the temperture gradient.

The blue Newton method arrows show the Fig. 1 Illustration of the transport solution problem
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direction that would be taken if the gradient of the heat flux with respect to temperature
gradient was used to determine the direction to the target flux. The Newton method will stall
at the local maximum in the model flux and not be able to reach the target unless the starting

point is on the high gradient branch. On the other hand, the response matrix form of the flux
always has a positive coefficient n( X"+ " )of the gradient. Taking the direction to the

target just from the gradient gives the pink arrows in Fig.1 . This direction will always lead to
the target flux but each iteration does not always reduce the difference between Q... and Q...
In general, the relation between the fluxes and gradients is a postivie definite matrix. This
positive definite property is guaranteed by the Onsager symmetry of the response matrix for
both neoclassical and turbulent fluxes [3].

Onsager symmetry

The linear electrostatic gyrokinetic equation for the fluctuation of the distribution function

f~ and the electrostatic potential ® can be written in the form

GF = SX,B, () FES® whete G=-w+uk, -(20,0° +0,v?).

F = ﬁe , F =2ve™, _j:duFuZdvFv PP =5, .
XP =(c;uz/z'+a)n)+a)pu+a)TH (u2 _1/2)+er (V2 —1) : (1)
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The parallel (u) and perpendicular (v) velocities are normalized to the species thermal

velocity. The normalized equilibrium drift frequencies are given by: density gradient o ,

parallel velocity gradient @, parallel temperature gradeint w, and perpendicular temperature
Il
gradient w, . The parallel gradient operator is kp and the curvture and grad-B drift terms are

w, ,o, . The equilibrium parallel flow is neglected for simplicity. The electrostatic transport

fluxes can be written as a product of velocity moments of the fluctuating distribution function
and the fluctuating ExB drift.

0,- [au[ v f(-ik &)= S, [au [avP P, (u3) EFG 8-k )= S X R, @
—o 0 m -0 0 m

The first form in Eq. 2 is the definition of the flux, the second form has the linear solution for
Eq. 1 substituted for the fluctuating distribution function. The last form defines the response

matrix R which relates the fluxes to the linear gradient driven drift vector X. The real part of
Eq. 2 is the physical transport flux. Clearly the response matrix is symmetric R, =R . This

is the essence of Onsager symmetry. It can be shown that this symmetry ensures that the

entropy production is postitive [3].



46" EPS Conference on Plasma Physics P2.1079

New gyro-fluid closure

Gyro-fluid models take velocity space moments of the gyrokinetic equation and then close the
system in a way to model the residue of the collisionless kinetic poles (resonances) in velocity
space where G = 0. Without a closure, the collisionless gyro-fluid linear response will have
singularities at a sequence of values along the real freqency line. Adding more velocity space
moments does not remove these resonances it just makes more of them. A few properties of

the standard gyro-fluid closures will be stated here without proof. Taking fluid moments of

Eq. 1 with ortho-normal polynomials P results in a matrix form for the linear gyrokinetic

equation. The matrix G, must be symmetric in order to satisfy Onsager symmetry

(neglecting the mirror force, collisions and FLR terms). The standard gyrofluid method of
closure [1, 2, 4] writes velocity space moments, that are above the order of the highest
polynomial moment of the time derivative term in the fluid moments, as a linear combination
of the lower moments. The coefficeints of this closure relation are then determined by fitting
to the linear response for the lowest moments. This can produce a very accurate fit to the low

moments (e.g. density) at the expense of the higher moments. This method does not respect
Onsager symmetry since it makes G, not have any symmetry. A simple closure, that

respects the Onsager symmetry, and still gives a reasonable model of the residues of the

kinetic resonances, is to add a velocity space independent damping term to G:

G = G—icp ‘kp‘—icdu ‘a) —icdv‘wdv‘. The three coefficeints (cp, c,c ) are chosen to fit the

ol A
collisionless kinetic response functions. This model has the advantage that it does not depend
on the number of velocity space moments so the velocity space resolution of the gyro-fluid
equations can be changed as needed. This was not possbile with the standard closure. One of
the goals of this new model is to be able to accurately resolve the energy and momentum
fluxes due to parallel magnetic field fluctuation response which requires a higher number of
perpendicular velocity space moments than any of the previous gyrofluid models. The spatial
direction parallel to the magnetic field is represented by the same system of Hermite
polynomials as in Ref. 4. The parallel space resolution can also be changed without changing
the new closure. A gyro-fluid system of equations using this closure has been coded in
Mathemetica for verification with gyrokinetic linear results. This version is for the s-alpha
model geometry (shifted circle, large aspect ratio). The mirror force terms coming from the
conversion of the parallel gradient operator for constant energy and magnetic moment to a
parallel gradient at constant u and v are included. This eliminates the need for bounce
averaging of trapped particles that greatly added to the compexity of the TGLF equations [4].
The full Bessel function gyro-averging term in Eq. 1 is included for electrons and ions. The
agreement between the linear growth rates for the new gyrofluid model and the gyrokinetic

code GKS [5] is good for for both cases in Fig. 2 and 3. The mirror force term in
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Fig.2 Linear growth rates for GA-STD case with Fig. 3 linear growth rates for a trapped electron
a/LT=6.0 comparing the new gyro-fluid model mode case (GA-STD with a/LT=0, a/Ln=3, ky=0.3)
(TGLF-2.0) to the GKS code [5]. Compare to Fig. comparing the new gyro-fluid model (TGLF-2.0) to
11 of Ref. 4. the GKS code [5]. Compare to Fig. 9 of Ref. 4.

the new model does not require the additional model tuning required for the bounce average
TGLF [4] for the trapped electron mode case in Fig. 3. This is the same case as in Ref. 4. A
large database of gyrokinetic linear stability calculations will be used to determine the
optimum value of the closure coefficients for different velocity space and parallel moment
resolutions. This is a promising first verification test of the new linear gyrofluid model.

Electromagnetic and collision tests will be shown in the poster presentation.
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