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Abstract: Gyro-fluid equations are velocity space moments of the gyrokinetic equation. The 
damping due to kinetic resonances is included through a closure scheme chosen to match the 
collisionless density response functions. This damping allows for accurate linear eigenmodes 
to be computed, even in the collisionless limit, with a relatively low number of velocity space 
moments compared to gyrokinetic codes. The standard methods [1, 2] use the truncated 
moments to close the system of equations. An analysis of the gyro-fluid closure schemes will 
be presented that demonstrates a number of problems with the standard method. In particular, 
the Onsager symmetries [3] of the resulting quasilinear fluxes are not preserved. Onsager 
symmetry guarantees that the matrix of diffusivities is positive definite, an important property 
for a transport model. The constraints on the closure due to Onsager symmetry and other 
considerations are shown to be very restrictive. A new, simpler scheme for including the 
kinetic damping is found that preserves the Onsager symmetry and is scalable to higher 
velocity space moments without change of the damping model. Linear eigenmodes from the 
new system of equations are compared with gyrokinetic results, with and without collisions, 
including parallel and perpendicular electromagnetic fluctuations at high beta. The new 
system of gyro-fluid equations will be used to extend the TGLF quasilinear transport model 
[4] so that it can compute the energy and momentum fluxes due to parallel magnetic 
fluctuations, completing the transport matrix. The Onsager symmetries will enable faster 
transport solvers since the matrix of convection and diffusion coefficients will all be 
computed by a single call to the quasilinear transport model. 
 
Advantage of the response matrix flux form 

Consider the following "response matrix" form of the heat flux Q = −n χ neo + χ turb( )dT dr . 

The first term is the neoclassical thermal diffusivity χ neo which is independent of the 

gradients. The second term is the due to turbulence and is a non-linear function of the 

gradients. For example, the turbulence terms could be χ turb = χ0
turb 1+ c1 γExB γ0( )
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⎟  where

the ExB velocity shear is taken to be 

γExB = c eBLn( )dT dr .  

This illustrative model is plotted in Fig. 1 
for specific parameters chosen make a 
multi-valued curve.  In a transport code, 
the model heat flux could be at the level of 
the red line labeled Qmodel in Fig. 1 for three 
different values of the temperture gradient. 
The blue Newton method arrows show the  
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Fig. 1 Illustration of the transport solution problem 
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direction that would be taken if the gradient of the heat flux with respect to temperature 
gradient was used to determine the direction to the target flux. The Newton method will stall 
at the local maximum in the model flux and not be able to reach the target unless the starting 
point is on the high gradient branch. On the other hand, the response matrix form of the flux 

always has a positive coefficient n χ neo + χ turb( ) of the gradient. Taking the direction to the 

target just from the gradient gives the pink arrows in Fig.1 . This direction will always lead to 
the target flux but each iteration does not always reduce the difference between Qmodel and Qtarget.  
In general, the relation between the fluxes and gradients is a postivie definite matrix. This 
positive definite property is guaranteed by the Onsager symmetry of the response matrix for 
both neoclassical and turbulent fluxes [3].  
Onsager symmetry 
The linear electrostatic gyrokinetic equation for the fluctuation of the distribution function 
!f and the electrostatic potential !Φ  can be written in the form 

  G!f = Xn
n
∑ Pn u,v( )FuFvJ02 !Φ   where  G = −ω + ukp − 2ωduu

2 +ωdvv
2( ) , 

Fu =
1
π
e−u

2

, Fv = 2ve
−v2 , duFu

−∞

∞

∫ dvFv
0

∞

∫ PnPm = δn,m ,  

XnPn
n
∑ = ω z τ +ωn( )+ω pu +ωT|| u

2 −1 2( )+ωT⊥ v2 −1( ) .     (1) 

The parallel (u) and perpendicular (v) velocities are normalized to the species thermal 

velocity. The normalized equilibrium drift frequencies are given by: density gradient ωn , 

parallel velocity gradient ω p , parallel temperature gradeint ωT|| and perpendicular temperature 

gradient ωT⊥ . The parallel gradient operator is kp and the curvture and grad-B drift terms are 

ωdu ,ωdv . The equilibrium parallel flow is neglected for simplicity.  The electrostatic transport 

fluxes can be written as a product of velocity moments of the fluctuating distribution function  
and the fluctuating ExB drift. 

Qn = du
−∞

∞

∫ dv
0

∞

∫ Pn !f −iky !Φ
*( ) = Xm

m
∑ du

−∞

∞

∫ dv
0

∞

∫ PnPm u,v( )FuFvG−1J0
2 !Φ −iky !Φ

*( ) = Xm
m
∑ Rn,m    (2) 

The first form in Eq. 2 is the definition of the flux, the second form has the linear solution for 
Eq. 1 substituted for the fluctuating distribution function. The last form defines the response 
matrix R which relates the fluxes to the linear gradient driven drift vector X. The real part of 

Eq. 2 is the physical transport flux. Clearly the response matrix is symmetric Rm,n = Rn,m . This 

is the essence of Onsager symmetry. It can be shown that this symmetry ensures that the 
entropy production is postitive [3].  
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New gyro-fluid closure 
Gyro-fluid models take velocity space moments of the gyrokinetic equation and then close the 
system in a way to model the residue of the collisionless kinetic poles (resonances) in velocity 
space where G = 0. Without a closure, the collisionless gyro-fluid linear response will have 
singularities at a sequence of values along the real freqency line. Adding more velocity space 
moments does not remove these resonances it just makes more of them. A few properties of 
the standard gyro-fluid closures will be stated here without proof. Taking fluid moments of 

Eq. 1 with ortho-normal polynomials Pm  results in a matrix form for the linear gyrokinetic 

equation. The matrix Gn,m must be symmetric in order to satisfy Onsager symmetry 

(neglecting the mirror force, collisions and FLR terms). The standard gyrofluid method of 
closure [1, 2, 4] writes velocity space moments, that are above the order of the highest 
polynomial moment of the time derivative term in the fluid moments, as a linear combination 
of the lower moments. The coefficeints of this closure relation are then determined by fitting 
to the linear response for the lowest moments. This can produce a very accurate fit to the low 
moments (e.g. density) at the expense of the higher moments. This method does not respect 

Onsager symmetry since it makes Gn,m not have any symmetry. A simple closure, that 

respects the Onsager symmetry, and still gives a reasonable model of the residues of the 
kinetic resonances, is to add a velocity space independent damping term to G: 

ʹG =G − icp kp − icdu ωdu − icdv ωdv .  The three coefficeints cp , cdu , c
dv( )  are chosen to fit the 

collisionless kinetic response functions. This model has the advantage that it does not depend 
on the number of velocity space moments so the velocity space resolution of the gyro-fluid 
equations can be changed as needed. This was not possbile with the standard closure. One of 
the goals of this new model is to be able to accurately resolve the energy and momentum 
fluxes due to parallel magnetic field fluctuation response which requires a higher number of 
perpendicular velocity space moments than any of the previous gyrofluid models. The spatial 
direction parallel to the magnetic field is represented by the same system of Hermite 
polynomials as in Ref. 4. The parallel space resolution can also be changed without changing 
the new closure. A gyro-fluid system of equations using this closure has been coded in 
Mathemetica for verification with gyrokinetic linear results. This version is for the s-alpha 
model geometry (shifted circle, large aspect ratio). The mirror force terms coming from the 
conversion of the parallel gradient operator for constant energy and magnetic moment to a 
parallel gradient at constant u and v are included. This eliminates the need for bounce 
averaging of trapped particles that greatly added to the compexity of the TGLF equations [4]. 
The full Bessel function gyro-averging term in Eq. 1 is included for electrons and ions. The 
agreement between the linear growth rates for the new gyrofluid model and the gyrokinetic 
code GKS [5] is good for for both cases in Fig. 2 and 3. The mirror force term in

46th EPS Conference on Plasma Physics P2.1079



0.1

1

10

100

0.1 1 10 25
ky

gamma GKS

gamma TGLF-2.0

GA-STD a/LT=6
nb=8, nu=5, nv=3

 
Fig.2 Linear growth rates for GA-STD  case with   
a/LT=6.0 comparing the new gyro-fluid model 
(TGLF-2.0) to the GKS code [5]. Compare to Fig. 
11 of Ref. 4.  
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Fig. 3 linear growth rates for a trapped electron 
mode case (GA-STD with a/LT=0, a/Ln=3, ky=0.3) 
comparing the new gyro-fluid model (TGLF-2.0) to 
the GKS code [5]. Compare to Fig. 9 of Ref. 4.

the new model does not require the additional model tuning required for the bounce average 
TGLF [4] for the trapped electron mode case in Fig. 3. This is the same case as in Ref. 4. A 
large database of gyrokinetic linear stability calculations will be used to determine the 
optimum value of the closure coefficients for different velocity space and parallel moment 
resolutions. This is a promising first verification test of the new linear gyrofluid model. 
Electromagnetic and collision tests will be shown in the poster presentation. 
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