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Introduction

The scrape-off layer and the edge region in fusion plasmas are replete with turbulence induced

incoherent fluctuations, and coherent fluctuations, such as blobs and filaments. Radio frequency

(RF) electromagnetic waves, excited by antenna structures placed near the wall of a fusion de-

vice, encounter this turbulent region as they propagate towards the core. In order to optimize the

heating of plasmas, or the generation of non-inductive plasma currents, it is necessary to prop-

erly assess the effect of this turbulence on RF waves. We have undertaken a set of theoretical

and computational studies that model the propagation of RF waves through turbulent plasma.

The theoretical models are mathematically tractable, and provide physical and intuitive insight

into the effect of turbulence on RF waves. The computational studies provide support for these

theoretical models. We use two complementary theoretical approaches – geometrical optics and

physical optics – for magnetized plasmas with a tensor permittivity. The former, an approxima-

tion to the latter full-wave approach, is useful for incoherent fluctuations and leads to Snell’s

law and the Fresnel equations in plasmas. This is the basis of the Kirchhoff’s approximation for

scattering off density fluctuations [1, 2]. The physical optics method is the basis for studying

scattering from coherent fluctuations [3, 4]. The two complementary analyses reveal important

physical insights into the scattering of RF waves. Besides refraction and reflection, the spatial

uniformity of power flow into the plasma is affected by side-scattering, diffraction, shadowing,

and interference. Significantly, the incident RF wave power can couple to other plasma waves as

a result of fluctuations. Within the framework of the COMSOL software, we have built a numer-

ical code to study scattering of RF waves by fluctuations [5]. The code has been benchmarked

against theoretical results, and is being used to study scattering from complex representations

of density fluctuations.

Kirchhoff tangent plane approximation

The theoretical model we use for studying the scattering of electromagnetic waves from tur-

bulent plasma is based on the Kirchhoff approximation that is commonly used to study the

scattering of waves from rough surfaces [1, 2]. The basis of the Kirchhoff approximation, also
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Figure 1: (a) a surface separating two different plasma densities n0 and n1; (b) a closeup of the shaded

region in (a) with examples of local tangent planes (red dashes).

referred to as the tangent plane approximation, is built upon the theory of geometrical optics.

In this approximation, the scattered field, due to planar turbulence, is determined by the wave

fields on the surface of the turbulence separating two different plasma densities. Each point on

this surface is assumed to be part of an infinitely homogeneous plane that is along the local

tangent at that point. Consequently, the Kirchhoff approximation leads to the study of reflection

and refraction of plane waves by planar surfaces using the theory of geometrical optics. This

simplifies the modeling of RF scattering by turbulence and, importantly, gives insight into sev-

eral, practically significant, aspects of scattering. Through this approach, we can obtain results

for scattering in magnetized plasmas, described by an anisotropic permittivity tensor, that are

equivalent to Snell’s laws and the Fresnel’s equations which are traditionally obtained for plane

electromagnetic waves in isotropic scalar dielectrics.

As a consequence of the Kirchhoff tangent plane approximation, the scattering of RF waves

by a turbulent plasma is treated locally in space. We follow a local Cartesian coordinate rep-

resentation of a toroidal device in (x,y,z) space, with the unit vector x̂ representing the radial

direction, ŷ being along the poloidal direction, and ẑ being the direction of the ambient, homo-

geneous, magnetic field. Consider a three-dimensional surface in this geometry that separates

plasmas with two different densities,

z = f (x,y), (1)

as shown in Fig. 1(a). This surface is a representation of local turbulent region. At any point

(x0,y0,z0) on this surface, with z0 = f (x0,y0), for z < z0 the electron density is n0 and for z > z0

the electron density is n1. The RF wave is assumed to be incident on this surface from the region
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with density n0. Figure 1(b) is a magnification of the shaded region in Fig. 1(a), and shows the

local tangent lines (in red) that are indicative of the Kirchhoff approximation. The tangent plane

is defined by the local normal. From,

ξ = x0− f (y0,z0) = 0, (2)

the local unit normal vector is given by,

n̂ =
∇ξ

||∇ξ ||
. (3)

Let us define a new coordinate system (x̂′, ŷ′, ẑ′), where x̂′ = n̂. In general, (x̂′, ŷ′, ẑ′) can be

constructed from (x̂, ŷ, ẑ) through two Euler rotations,
cosθ sinθ 0

−sinθ cosθ 0

0 0 1




cosφ 0 −sinφ

0 1 0

sinφ 0 cosφ

 , (4)

where,

tanφ =− z0

x0
and tanθ =

y0

x0 cosφ − z0 sinφ
. (5)

An important consequence of the Kirchhoff approximation follows in a straight forward

fashion. In the (x̂, ŷ, ẑ) system, let the incoming RF plane wave have the wave vector ~k0 =

k0⊥x̂+ k0‖ẑ. In order to satisfy the electromagnetic boundary conditions at the plane separating

two different plasma densities, all waves – incident, reflected, and transmitted – need to have

common components of the wave vector in the tangent plane. This is a kinematic property that,

for example, in conventional electrodynamics, leads to Snell’s law for reflection and refraction

of electromagnetic waves at an interface [4, 6] The dynamic properties, such as amplitudes and

polarizations of the electromagnetic fields, also follow from the boundary conditions, but will

not be discussed in this paper. If in the (x̂′, ŷ′, ẑ′) frame, the wave vector of either the reflected

or transmitted wave is given by~k′ = k′xx̂′+ k′yŷ′+ k′zẑ
′, then from the kinematic property,

k′y = k0⊥ sinθ cosφ + k0‖ sinθ sinφ , (6)

k′z = k0⊥ sinφ + k0‖ cosφ , (7)

for all waves. The k′x for any wave is determined from the appropriately transformed dispersion

relation for the magnetized plasma with the given density – for reflected wave the density is

n0 and for the transmitted wave it is n1. If we inverse transform Eqs. (6) and (7) to the (x̂, ŷ, ẑ)

system, then it is clear that for the reflected wave having the same polarization as the incident

wave, kR
y = 0 and kR

z = k0‖. However, if φ 6= 0 and θ 6= 0, then, for the transmitted wave, kT
y 6= 0
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and kT
z 6= k0‖. This implies that, due to the fluctuations, part of the transmitted power is side-

scattered, and the component of its wave vector along the magnetic field is different from that of

the incident wave. The spectrum of the electromagnetic wave propagating past the fluctuation

toward the core of the plasma is modified.

Another aspect of scattering that arises in plasmas is related to the dynamical property of

the boundary conditions [4, 6]. At the interface separating two different densities, Maxwell’s

equations require the following,

∆

(
n̂ ·
↔
K ·~E

)
= 0, ∆

(
n̂ ·~B

)
= 0, (8)

∆

(
n̂×~B

)
= 0, ∆

(
n̂×~E

)
= 0, (9)

where ∆ indicates a jump across the tangent plane,
↔
K is the cold plasma permittivity [4], and

~E and ~B are the electric and magnetic fields, respectively, of the plane waves. These boundary

conditions come from Gauss’ laws for the electric and magnetic fields, Faraday’s equation, and

Ampere’s equation, respectively. Of these six boundary conditions only four are independent

for a cold plasma permittivity [4]. Consequently, apart from the incident wave, there have to

be four waves involved in the scattering process. Otherwise, the boundary conditions cannot

all be satisfied. Since the cold plasma dispersion relation has two independent wave modes,

each of the reflected and transmitted fields have to be a sum of these two independent modes

in the two, different, density regions. This implies that waves with polarizations different from

the incident wave can be excited by turbulence induced scattering. For example, suppose an

ordinary wave, in the electron cyclotron range of frequencies, is incident on the planar surface.

Then the reflected and transmitted fields will be a sum of ordinary and extraordinary waves.
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