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Introduction

The analysis of turbulent flows in the edge region of tokamak plasmas requires the measure-
ment of time-averaged turbulent stresses and fluxes such as the Reynolds stress (RS), which has
been identified in recent models and experiments [1] as a likely driver of poloidal zonal flows
expected to play a key role in the L-H transition. However, the common method of using floating
potential fluctuations measured by Langmuir probes (LP) Vhpsuffers from being contaminated
by electron temperature fluctuations 7,[2, 8]. For the interpretation of such experiments it is
worth-while to seek a correction of V}‘lpstatistics by the exploitation of additional knowledge of

T,statistics offered by e.g. the combination of LP with ball-pen probes (BPP) [9].

Decomposition of turbulent moments measured by probes into covariances

Turbulent moments of interest such as the radial-poloidal component of the Reynolds stress
(¥,7,), turbulent energy in the respective components (72) and (#?) are often measured under the
assumption of the electrostatic ((B) = 0) velocity fluctuations being dominantly due to the ¥; ~
E ; X B drift. Under these assumptions the problem is transformed into the measurement of elec-
tric field fluctuations and their variance (E12> = var(E;) and covariances (EE;) = cov(E,E;).
It is worth noting that these second-order statistical moments are centered, i.e. independent of
the mean value (E;).

The electric field components and their fluctuations are typically approximated by finite dif-
ferences between appropriately positioned electrostatic probes E; ~ — (V(l) — V(k)) /dj measur-
ing a floating potential v and separated by a distance dj;. For simplicity the factor —1/dy,

will be omitted in the following discussion. The electric field variance (and similarly covari-

ance) then separates due to its bilinearity into

var(E;) o< var(V %)) — 2cov(V®V D) 4 var(v®) (1)



46" EPS Conference on Plasma Physics P2.1097

Unfortunately, probes such as Langmuir or ball-pen probes in so called floating mode do not
measure directly the plasma potential ¢, but a floating potential V = ¢ — a7, which is offset
from the true plasma potential by a factor linearly dependent on the electron temperature 7,
(here in eV) with the proportionality constant o, which can be large, e.g. 2.8 in magnetized
Deuterium plasma for a typical Langmuir probe. Therefore, the statistical moments of the float-

ing potential also separate into extra terms (the probe indices are left out for clarity)

var(V) o< var(¢) — 20cov(¢ T, ) + a*var(T,) (2)

Combining (1) and (2) would result in a complicated expression with 9 terms, of which only
the terms relating to the potential var(E;) o var(¢®)) — 2cov(¢ K ¢()) +var(¢(!)) are actually
of the interest, all the other 6 terms involving 7, only obscure the sought value. Therefore, it is

necessary to find a way of cancelling or separating out the 6 extra terms.

Reconstruction of potential covariances from floating point measurements

Using experimental data measured with both COMPASS #14822
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plasma exhibits temperature and potential fluctua-

tions which are somewhat correlated in space and Figure 1: Radial profiles of var(E,) and
time, so a combination of their statistical moments the Reynolds stress as measured by ball-
such as in (1) and (2) may result in the terms being pen (BPP) and Langmuir probes (LP) and

linearly dependent. a correction from LP moments in the dis-

As proof-of-principle example the variance of charge #14822.
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the electric field var(E,) measured by ball-pen

probes was used as the turbulent moment representing poloidal turbulent kinetic energy. This
variance measured by a pair of radially separated ball-pen probes was then approximated by
a linear combination of the floating potential variance and covariance terms appearing in (1)
of a pair of Langmuir probes with the same radial separation. The linear approximation offers
surprising accuracy as seen in Figure 1 with the same combinations coefficients holding over a
wide radial range covering both the SOL and inside the LCFES across several discharges.

A similar correction possibility was found for the measured Reynolds stress itself as a linear

combination of Langmuir probe moments, with an additional term , /var(EFF)var(ELP repre-

senting the offset due to missing Langmuir probes with respect to the ball-pen probes geometry.

Comparison with HESEL simulations

In order to understand how the physical moments in (2) may be related the output of simula-
tions by the fluid HESEL code [5, 6] for comparable COMPASS parameters [7] was analyzed.
Radially separated synthetic probes Vy; ; and ¢BPP were constructed by the appropriate combi-
nation of recorded time-traces of ¢ and 7,. Then the averaging for obtaining statistical moments
at each radial location was done over the stationary part of the time traces.

Defining D(X) := var(X;) — 2cov(X;,X;) + var(X;)

.- HESEL ST16-3 115 and D(X,Y) :=cov(X;,Y;) —cov(X;,Y;) —cov(X;,Y;) +
7 . ;ﬁi cov(X;,Y;) then leads to the variances observed by the
6 - ggge synthetic probes to be given by var(EEP?) o< D(¢) —
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% : _ 2.8D(¢,T,) +2.8°D(T,). These terms and their combi-

nations are shown in Figure 2 Due to the very different
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but not so easily inside the LCFS. A linear regression

over the whole radial extent (SOL and inside the LCFS) does not result in such a good fit as
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for the experimental data, the best fit is obtained by approximately rescaling the var(V(k)) com-
ponent by 1/(1 —20yp+ a}p), i.e. assuming D(¢) ~ D(9T,) ~ D(T,). An inspection of the
decomposition of the regressed V terms according to (2) (i.e. multiplied by te regression coef-
ficients and appropriate « factors) for the SOL case reveals that the 7, and ¢, T, terms partially

cancel each other with the residual building up to D(¢).

Conclusions

Turbulent moments measured by Langmuir probes may be strongly influenced by var(7,)
and cov(¢,T,) (and covariance similarly) terms as evidenced by experimental and simulation
results. A comparison of experimental ball-pen and Langmuir probe measurements suggests
the possibility of correcting moments measured by Langmuir probes as a linear combination
of moments of individual Langmuir probe measurements. Comparison with HESEL simulation
results suggests that such a correction could be indeed possible at least in the SOL due to the
T, moments and covariances between ¢ and 7, partially cancelling with an appropriate linear
combination. The simulations further suggest that ball-pen probes are affected by var(7, ) nearly

at all and only a little by cov(¢,T,) terms.
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