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Abstract

Homogenization methods for dielectric mixtures have existed for over two decades,

but their limitations regarding the wavelength of incoming beam did not allow them to be

used extensively in tokamak plasmas. We present a new method which does not have the

same limitations, with application to a dielectric plasma mixture with embedded filamen-

tary structures of different density than the background plasma.

The Polynomial chaos expansion (PCE) method determines, in a computationally ef-

ficient way, the evolution of uncertainty in a dynamical system due to the probabilistic

uncertainty in the system parameters.

In this work, by use of the PCE in conjunction with the homogenization method we cal-

culate the statistical properties of the output (reflection-transmission) of a slab-scattering

system for uncertain parameters regarding tokamak plasma and blobs that approximate the

plasma-blob dielectric mixture. This scattering configuration models the propagation of ra-

dio frequency (RF) waves through turbulent tokamak plasma, with significant applications

in RF heating, current drive and diagnostics.

Homogenization Method

The method of homogenization addresses the subject of composite dielectric media, produc-

ing an equivalent homogeneous medium which can be studied in place of the real medium, with

respect to its electromagnetic properties. Different formalisms have been developed and used

in many cases [1],[2]. The thought of using existing formalisms for plasma physics applica-

tions comes naturally. An area of special interest is the SOL region of tokamak plasmas, where

filamentary structures are formed, due to turbulent flows. These formations are called blobs.

However, with respect to the above problem, existing methods fall short because of their

limitations regarding the ratio of incoming beam wavelength to blob size. A new method has

been recently developed [3] which utilizes Fourier transformed quantities of the electromag-

netic fields, transferring approximations to another part of the problem (namely, the numerical

integration part) rather than the start, where Rayleigh approximations were used in previous

applications.
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The Polynomial Chaos Expansion Method

Real world systems in science and engineering often depend on uncertain inputs. Uncertainty

Quantification (UQ) quantifies the impact of the system’s input to the system’s output quantities

of interest (QoI). The Polynomial Chaos Expansion (PCE) method is among the most popular

probabilistic UQ methods.

In PCE it is assumed that the system’s input uncertainty is described by a d-dimensional

random vector Ξ = (Ξ1,Ξ2, . . . ,Ξd) with Ξi, i = 1, . . . ,d independent identically distributed

random variables (i.i.d) and realizations ξ = (ξ1,ξ2, . . . ,ξd). Then the joint probability density

function (pdf) is f (ξ ) = ∏d
k=1 f (ξk), where f (ξk) is the pdf of Ξk. If the QoI, u(Ξ) is a scalar

with finite variance, u(Ξ) can be expanded (PCE method) as:

u(Ξ) =
∞

∑
j=1

c jψ j (Ξ) , (1)

where ψ j (Ξ) are multivariate polynomials that are orthogonal to f (ξ ), and c j are the PCE

deterministic coefficients that need to be estimated.

In reality the summation in eq. 1 is truncated to the first P terms:

u(Ξ) =
P

∑
j=1

c jψ j (Ξ)+ ε (Ξ) , (2)

where ε (Ξ) is the truncation error of the PCE. The construction of the multi-dimensional poly-

nomial basis function ψ j (Ξ) is based on the Askey ([4]) scheme which is suitable for general

non-Gaussian random inputs. In particular if ψ jk (Ξk) specify a complete set of univariate poly-

nomials of order jk, where jk ∈ N∪{0} that are orthonormal with respect to the pdf f (ξk), the

multi-dimensional basis functions are:

ψ j (Ξ) =
d

∏
k=1

ψ jk (Ξk) , (3)

where j = ( j1, . . . , jd) specifies the order of ψ j (Ξ). If the maximum total order of ψ j (Ξ) is

pmax, (∑d
k=1 jk ≤ pmax), the number P of basis functions in the truncated PCE expansion, eq. 2,

is:

P =
(pmax +d)!

d!pmax!
. (4)

If u has finite variance, the PCE in eq. 2 converges in the mean-square sense as pmax or P tend to

infinity. In addition if the univariate polynomial basis is chosen according to the Askey scheme,

the error term in eq. 2 tends to zero exponentially fast. The PCE coefficients c j are computed

by projecting the QoI into the corresponding PCE basis:

c j = E
[
uψ j

]
. (5)
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In reality eq. 5 is inefficient to apply, and other methods have been developed. These fall into two

categories, intrusive and non-intrusive methods. In intrusive methods the deterministic solvers

that relate the system output and input is modified, which can be problematic. In non-intrusive

methods the deterministic solvers are considered as a black box that provide a QoI sampling

from a particular system input sampling. In this work the PCE coefficients are determined using

a non-intrusive method based on the Least Squares (LS) approximation. In the PCE-LS method

we sample the d-dimensional input random vectors {ξ i}N
i=1 according to the f (ξ ) pdf (Monte

Carlo sampling), and then by using the deterministic solvers we obtain the QoI {u(ξ i)}N
i=1.

Then eq. 2 can be written in the form:

u = Ψc+ ε, (6)

where u = (u(ξ 1) ,u(ξ 2) , . . . ,u(ξ N))
T , Ψi, j = ψ j (ξi) ∈ RN×P, the error vector ε ∈ RN and

c = (c1,c3, . . . ,cP)
T . It is oberved that eq. 6 is a regression task and the PCE coefficient vector

can be estimated in the LS sense according to:

c =
(
ΨT Ψ

)−1 ΨT u. (7)

The LS solution 7 is stable as long as N > P. As a rule of thump, for PCE applications, N = 4P

is a good choice. From the PCE coefficients, c, the mean value and variance of the QoI are

directly calculated [4].

Results

The scattering of (RF) plane waves at 170Ghz, by three anisotropic dielectric layers is con-

sidered. The first and third layers are a plasma semi-infinite layer described by a relative per-

mittivity tensor εp = [4.83 i0.86 0;−i0.86 4.69 0;0 0 5.76] and density np = 5 · 1019m−3. The

middle layer of thickness d = 5cm, consists of a mixture of plasma and blobs with relative

permittivity tensors εp and εb = [10.66 i11.52 0;−i11.52 10.66 0;0 0 0.72] respectively and

nb = 1020m−3. Using the homogenization theory this mixed layer is considered equivalent to a

layer of anisotropic permittivity εeqv.. The homogenization method uses as inputs the percentage

of blob in the middle layer pb and the major Rb and minor rb axes of the blob, assuming it is

of elliptical shape and provides εeqv.. The system to be analyzed by the PCE method consists of

the homogenization method code [3] in series with the multilayer anisotropic scattering solver

[5]-[6]. The system’s input is the three dimensional random vector ξ = (pb,Rb,rb) and its QoI is

the reflection R (or transmission T ) of the scattering solver. The QoI statistics are calculated by

the PCE method for various incident angles of the RF wave. The input parameters are uniformly
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Figure 1: Figure 1: mean value (a) and standard deviation (b) of reflection (R) using the Monte

Carlo (MC) and Polynomial Chaos Expansion-Least Squares (PCE-LS) method as a function

of the plane wave angle of incidence (θ )

distributed (5% around ξ = (0.2,0.5,0.5)) and the univariate basis are the Legendre polynomi-

als (so as to achieve exponential convergence [4] in eq. 2). In Fig. 1, the QoI (R) statistics are

shown as a function of θ . The MC method directly calculates R statistics as reference. It is seen

that PCE-LS and MC results are in excellent agreement, even though PCE-LS uses only 140

calls to the scattering solver.
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