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The dynamics of a two-dimensional (2D) inviscid and incompressible fluid can be con-

veniently studied using a strongly-magnetized pure electron plasma confined in a Penning-

Malmberg trap, thanks to a mathematical analogy where the fluid velocity is equivalent to the

plasma E×B velocity, and fluid vorticity and stream function correspond to plasma density

and electrostatic potential, respectively [1]. Experimental investigations have shed light on dy-

namical features of the fluid flow ranging from the insurgence and decay of diocotron (Kelvin-

Helmholtz) waves to the development of coherent structures and turbulence in conditions of

free evolution and more recently also under the effect of an external forcing [2, 3, 4, 5]. Typi-

cally, diocotron modes are excited applying multipolar static or oscillating electric fields on an

azimuthally-sectored trap electrode, limiting the maximum mode wavenumber to Ns/2, with Ns

the number of electrically insulated sectors. A scheme that removes this limit on the accessi-

ble wavenumber, based on the application of suitable multipolar rotating electric fields with a

drive frequency closely matching the frequency of the desired mode, has been introduced pre-

viously [6, 7]. Assuming a stepwise unperturbed radial density profile, n0(r) = n0H(Rp − r),

where H denotes the Heaviside step function and Rp is the plasma radius, the equilibrium rota-

tion frequency of the plasma is given by so-called diocotron frequency νD = en0/4πε0B, where

−e is the electron charge, ε0 the vacuum permittivity and B is the strength of the magnetic field

(directed along the symmetry axis of the trap). Here we consider the particular case of a sinu-

soidally time-varying potentials applied to a 8-sectored cylindrical electrode with a phase shift

of 3π/4 between adjacent sectors,

δφ(r = Rw,θ , t) =
7

∑
m=0

Vm(t)[H(θ −mπ/4)−H(θ − (m+1)π/4)], (1)

where Rw is the radius of the electrode’s inner wall, θ denotes the azimuthal angle, and Vm =

Vd cos(2πνdt + σm3π/4), with σ = ±1, and Vd and νd the amplitude and frequency of the

external drive, respectively. Assuming the magnetic field in the positive axial (z) direction, the

cases σ = −1 and σ = +1 refer to drive electric fields which are “co-” and “counter-”rotating

with respect to the azimuthal rotation of the unperturbed plasma, respectively. Using a linear

perturbation analysis, it can be shown [7] that a potential on the wall δφ ∝ exp(ilθ − 2πiνdt)
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Figure 1: Al/A0 of the dominant modes of the plasma

cross section deformation vs νd . A drive with Vd =

2.5 V is applied for 100 ms.

Figure 2: Plasma density (CCD image)

after the application of a co-rotating

drive with νd = 25 kHz (see Fig. 1).

produces a potential perturbation on the plasma surface that is linearly growing with time,

δφ(r = Rp,θ , t) ∝ [1+2πi(lνD −νl)t] exp(ilθ −2πiνlt), (2)

and therefore a significant deformation of the plasma cross section, only when νd = νl = νD[l−

1+(Rp/Rw)
2l], i.e., the frequency of the l-th diocotron mode [8], and l = 3+8k for σ =−1 or

l = 5+8k for σ = 1, respectively, with k = 0,1, . . . an integer index.

The experiments have been performed in the Penning-Malmberg trap ELTRAP [9]. A low

density (n≈ 1.5 ·106 cm−3) electron plasma is contained within a stack of cylindrical electrodes

(inner radius Rw = 4.5 cm), kept under ultra-high vacuum conditions (base pressure . 10−8

mbar). In the experiments reported here, B = 0.12 T, the plug electrodes are set to a potential of

-80 V, and the plasma length is ≈ 90 cm. The electron plasma is generated by applying a radio

frequency (RF) drive [10] with amplitude 5.65 V and frequency 7.42 MHz to one of the trap

electrodes for 12–15 seconds. The generated plasma has an approximately flat radial density

profile, with a mean radius Rp ≈ 0.5Rw. After switching off the generation drive, the diocotron

excitation drive is applied to an 8-sectored electrode for 100 ms, then the plasma is dumped

against a positively biased (Vph = 8 kV) phosphor screen grounding the nearest plug electrode.

The light emitted by the phosphor screen is collected by a charge coupled device (CCD) camera,

thus obtaining a snapshot of the axially averaged plasma density distribution. The frequency of

the drive νd is varied in successive experimental cycles searching for resonances.

The deformation of the plasma cross section has been chosen as a measure of the mode excita-

tion level. The electron density measured with the CCD camera is fitted on a polar grid with the

center of charge of the electron distribution as a reference point. At each radius of the grid, the

deviation from the θ -averaged density is Fourier analyzed as n(r,θ)− (1/2π)
∫ 2π

0 dθn(r,θ) =
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Figure 3: PIC simulation for the case of a co-

rotating drive with Vd = 1.0 V and νd = 33 kHz.
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Figure 4: Time evolution of Al/A0 (l =

2,3,4,5) for the run of Fig. 3.

n(r,θ)− A0(r) = ∑
lmax
l=1 Al(r)sin(lθ + ϕl) (with typically lmax = 10), and a radially averaged

Fourier amplitude is computed as Al = (2/R2
w)

∫ Rw
0 drrAl(r). These averaged amplitudes Al nor-

malized over A0 are shown as a function of νd in Fig. 1 for l = 3 and l = 5. The resonance

curves appear in general quite broad and the frequencies corresponding to their maxima are

shifted with respect to the theoretical values obtained from the idealized case of a stepwise

density profile [8]. An example of plasma configuration obtained with the application of a co-

rotating drive, showing a well defined triangular plasma cross-section is reported in Fig. 2.

The phenomenon has been also analyzed with a 2D particle-in-cell (PIC) code [11] imple-

menting a guiding-center (fluid) description of the transverse dynamics of the plasma [1]. A

Cartesian Ngrid ×Ngrid grid is used in the code, and the circular boundary of radius Rw is ap-

proximated by a piecewise linear function following the sides of the grid cells. Using a standard

bilinear interpolation for the charge density, the Poisson equation for the electrostatic poten-

tial is solved by means of a 2D Fast Fourier Transform (FFT) combined with a capacity ma-

trix method. For the time advancement of the electrons a fourth-order Runge-Kutta algorithm

is adopted. In the simulations reported here, B = 0.12 T, Rw = 4.5 cm, Ngrid = 256, and an

approximately flat initial density profile is simulated with 106 macro-particles randomly dis-

tributed within a radius Rp = 1.8 cm. The final time of the simulations is 5 ms, and the time

step is 10−7 s. An example of time evolution, relevant to a co-rotating drive, is reported in

Fig. 3. The deformation of the plasma cross section has been estimated using the same kind of

analysis performed with the experimental data reported above. The time evolution of Al for the

run of Fig. 3 is shown in Fig. 4. In this example, the evolution of the flow is characterized in

the early stage by the a rapid growth of the l = 3 mode, which later inversely cascades to an

l = 2 mode. The stationary state at the end of the simulation is characterized by an elliptically

deformed plasma core surrounded by a low-density triangular background arising from the fila-

mentation and mixing of nonlinear structures in the early stage of the evolution. The procedure

has been systematically repeated for a number of excitation frequencies around the expected
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Figure 5: Maximum amplitudes Al (normalized over A0) of the dominant modes of the plasma

cross section deformation vs νd obtained from PIC simulations with a co- (left) and a counter-

(right) rotating drive, with Vd = 1.0 V (red curves) and Vd = 0.2 V (blue curves). The dotted

lines indicate the resonance frequencies predicted by the linear perturbation theory.

resonance value. The resonance curves relevant to co-rotating and counter-rotating drives for

two values of the drive amplitude are reported in Fig. 5. The data correspond to the maximum

values achieved by Al during their time evolution. Similarly to the experiments, the results of

the numerical simulations in general confirm the resonant character of the selective diocotron

mode excitation. Increasing the drive amplitude, the resonance curves become broader and with

down-shifted maxima with respect to the predictions of the linear perturbation theory. Both ex-

periments and numerical simulations will be extended to systematically analyze the presence of

unwanted modes depending both on plasma properties like the initial density profile and on the

drive amplitude and duration.
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