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Introduction and numerical model

In Hall thruster geometry, the electric and magnetic field configuration creates a huge difference in drift velocity be-

tween electrons and ions, which generates electron cyclotron drift instability or ~E×~B electron drift instability [1]. Unstable

modes generated from this instability have an important role in cross-field anomalous transport of electrons. One special

interest for the industrial development of Hall thruster is characterizing the anomalous cross-field electron transport ob-

served after the channel exit. Since the ionization efficiency is more than 90%, the neutral atom density in that domain

is so low that the electron collisions cannot explain the high electron flux observed experimentally. Here we focus on

collision-less chaotic transport of electrons by the unstable modes generated by the ~E×~B drift instability. These unstable

modes can evolve at a sufficient level of turbulence into a non-magnetic ion-acoustic instability with modified angular

frequency given [2] by,
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where λDe is the electron Debye length, vd = Ez/B is the electron drift velocity, vi,b is the ion beam velocity, ρe = vthe/ωce

is the electron Larmor radius, vthe is the electron thermal velocity. We consider a Cartesian coordinate system, x-direction

as magnetic field direction, y-direction as ~E×~B drift direction and z−direction as constant electric field direction, which

are the radial, azimuthal and axial direction of the thruster chamber, respectively. ω , ωce and ωpi are the mode, electron

cyclotron and ion plasma frequencies, respectively, and g is the Gordeev function [5]. This analytical model for the

dispersion relation fits well with the experimental data. We consider a constant electric field E0ẑ along the z-direction and

a constant magnetic field ~B = B0x̂ along x-direction.

Experimentally, the observed propagation angle of the instability-generated wave deviates by tan−1(kz/ky) ∼ 10−

150 from the azimuthal y−direction near the thruster exit plane. Further from the exit plane, the propagation becomes

progressively more azimuthal [1]. Hence, the wave vector along axial direction kz ∼ 0.2ky, and the electric field along

the axial direction is dominated by the stronger constant field E0ẑ. Therefore for simplicity, we consider that the unstable

modes are confined in x− y (ie., r-θ ) plane only. Then the time varying part of the potential in x− y plane is constructed

as a sum of unstable modes. The total electric field acting on the particle is

−→
E (x,y,z, t) = ∑

n
φ0n [knx sinαn(x,y, t)x̂+ kny sinαn(x,y, t)ŷ]+E0ẑ, (2)

with the phase αn(x,y, t) = knxx+ knyy−ωnt + ζn, where n is a label for different modes with wave vector~kn, angular

frequency ωn and phase ζn.~kn, ωn follow the dispersion relation eq. (1) and phases ζn are random. Here the position

~x, velocity ~v, time t and the potential φ0 are normalized with Debye length λDe, thermal velocity vthe, electron plasma

frequency ω−1
pe and mev2

the/q, respectively. We choose the amplitude φ0n of all the modes equal to the saturation poten-

tial at the exit plane of the thruster |δφy,rms| = Te/(6
√

2) = 0.056v2
the [3]. We consider three modes (n = 1,2,3) with

(knx,kny,ωn) = (0.03,0.75,1.23×10−3), (0.03,1.5,1.7×10−3) and (0.03,2.25,1.87×10−3), respectively. In normalized

units, qB0/me = 0.1ωpe, qE0/me = 0.04ωpevthe, and vd = 0.4vthe. The equations of motion of the particle are

d~x
dt

=~v,
d~v
dt

= ~E +~v×~B. (3)
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Because ~E depends on space, the infinitesimal generators for both equations do not commute, and one uses a time-

splitting numerical integration scheme. The first equation is integrated in the form ~x(t +∆t) = Tv,∆t(~x(t)) =~x(t)+~v∆t.

For the second equation, we separate the electric integration~v(t+∆t) =TE,∆t(~v(t)) =~v(t)+(q/m)~E∆t from the magnetic

integration, which solves only the gyro-motion. For the latter, we use the Boris method [4], formally~v(t+∆t) =TB,∆t~v(t).

As a result, we use a second-order symmetric scheme x(t +∆t)

y(t +∆t)

= Tv,∆t/2 ◦TE,∆t/2 ◦TB,∆t ◦TE,∆t/2 ◦Tv,∆t/2

 x(t)

y(t)

 .

Time evolution of particle trajectory and velocity

600 650 700 750 800 850 900 950 1000
t[ω−1

pe ]

−1

0

1

2

3

4

v x
[0

.0
25

v t
h]
,v

y,
z[v

th
],
E p

[0
.2
v2 th

λ−
1

D
]

2√ϕ0

−2√ϕ0

Ep(t)
vz
vy
vx

660 680 700 720 740
t[ω−1

pe ]

−1.0

−0.5

0.0

0.5

1.0

x[λ
De ] (along B)

−40

0

40

80

120 y[10
λDe] 

(along E0×
B) 

0
40

80
120

160

z[
λ D

e
]

−30
0
30

(a) (b)

Figure 1: Particles evolution in the presence of a single background electrostatic wave with n = 2. Panel (a): velocity

components vx (black solid line), vy (red) and vz (blue) of one particle. Magenta line: electric field at particle location.

Near t = 800 and 900, the particle is trapped in the wave potential and it oscillates with the time period τb = 18ω−1
pe . Panel

(b): trajectories of 5 different particles with different initial phase.

We solve the equation of motion Eq. (3) numerically for 1056 particles. In the absence of the background electrostatic

waves Ex = Ey = 0, their trajectories are regular and exhibit cyclotron motion with a drift velocity vd = 0.4. Therefore,

their velocity components are vx = v0x,vy = v⊥0 cos(ωct)+vd and vz = v⊥0 sin(ωct), where v⊥0 =
√

v2
0z +(v0y− vd)2 and

(v0x,v0y,v0z) are the initial velocity components. In the presence of the background electrostatic wave, the wave-particle

interaction modifies their cyclotron motion. The strength of the wave-particle interaction depends on the wave amplitude

and the particle velocity. Fig. 1(a) presents the time evolution of the three velocity components and the electric field Ep(t)

(magenta line) at the particle location. Due to the cyclotron motion, vy oscillates about the drift velocity vd (solid red line).

During each cyclotron oscillations, when | vy |≤ 2
√

φ0 (denoted by black dashed lines) the particle strongly interacts with

the electrostatic wave, and the electric field Ep(t) increases/decreases the vx value by large amount. The inset of Fig. 1(a)

presents, during strong interaction, according to the sign of Ep, jumps of vx (black solid line) in positive and negative

direction. Moreover, during this strong interaction depending on the local potential profile, the particle may be trapped

in the wave potential well and oscillate with the bounce-frequency ωb = 0.35ωpe. In Fig. 1(a) near t = 800 and 900, it

is trapped. One essential condition for the trapping is ωb > ωc, where ωb = ky
√

qφ0/m is the bounce frequency. Since

ky� kx, the condition for trapping is easily satisfied along the y−direction, therefore the particle bounces back and forth

along y−direction and moves freely along the x−direction. Hence along x−direction it gains/loses energy from/to the

wave which causes a large change in vx. Finally, depending of the local potential value, it may escape from the wave and

again start to exhibit cyclotron motion. Therefore the duration of trapping depends on vx and ωb/ωc. It is observed that,

for small vx�
√

φ0, this trapping is easily observed for ωb/ωc ≥ 2. Outside the strong interaction region, due to the large
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Figure 2: Panel(a): initial (yellow solid bar) and final (bar with red boundary) velocity distribution along z at t = 5×

104ω−1
c . Panels (b) and (c): mean square velocity dispersion 〈v2

z (t)〉 and mean square displacement 〈z2(t)〉, respectively.

The red and black lines correspond to no-boundary and reflecting boundary cases, respectively Panel (c) reveals two

diffusion regimes in each curve, namely (0.08, 0.05) for no-boundary and (0.24, 0.15) for reflecting boundary.

particle velocity, electric field at particle location Ep changes rapidly, which generates the small-amplitude fast oscillation

in vx. vy is also modulated due to this fast change in Ep(t). Since the electric field along z-direction E0ẑ is constant, the

amplitude of the fast oscillation in vz is negligible. The motion along z−direction is coupled with the other two directions

due to ~v×~B term of Lorentz force, therefore vz is also modified during the strong interactions. In fig. 1(a) at t = 900,

during trapping, the oscillation of vz is observed with frequency ωb, on top of cyclotron motion.

Fig. 1(b) presents the trajectories of 5 particles with slightly different initial phases. In the absence of the electrostatic

wave, they exhibit cyclotron motion with drifting guiding center, and their trajectories remain confined in y− z plane.

Due to the strong interaction with the electrostatic wave in presence of magnetic field, each trajectory evolves differently

and separates exponentially from each other, and the dynamics become chaotic. During each strong interaction, there is a

change in the trajectories along x, and during trapping their average y location remain unchanged. The duration of strong

interaction depends ωb/ωc, therefore for single wave chaos will occurs for amplitude φ0 satisfy φ0 > ω2
c /k2

y . For thruster

parameter values, all three waves satisfy this criterion. In the presence of two and three waves, the dynamics become more

chaotic and this threshold value is redused.

Energy gain by the particles and their axial transport

To analyze transport, we consider 1056 particles with random initial positions in the rectangle 0 ≤ y0 ≤ 4π/k1y, 0 ≤

x0 ≤ 2π/k1x and with velocities drawn from a 3D Gaussian distribution with unit standard-deviation along all three

directions. Then we evolve their dynamics in presence of all three waves with equal amplitude φn0 = φ0,rms. For single

wave interaction, the Hamiltonian of the dynamics can be written in a time independent form and therefore, though

the dynamics remain chaotic, there is no net gain/loss of energy over long time evolution. But in presence of two/three

waves, the Hamiltonian is no more time independent, all the trajectories become chaotic and due to the wave particle

interaction they gain energy from the waves. Their net perpendicular velocity vy,vz increase. After sufficiently long time-

evolution, they form a Gaussian-like velocity distribution profile with higher temperature along y− and z−directions.

Since Ex� Ey,z, the increase of the velocity component along the magnetic field is negligible compared to the other two

directions. Therefore the temperature along the magnetic field remains nearly unchanged. Fig. 2(a) presents the initial

(t = 0) (solid yellow bars) and final (t = 5×104ω−1
c ) (bars with red border) velocity distribution of vz, which presents a

significant increase of temperature along perpendicular direction T⊥ compared to the parallel direction, T⊥/T‖ ∼ 4.

In the thruster chamber, there is an insulating boundary along x−direction. The width of the annular space in the thruster

is 240λDe. Therefore the particles are reflected when they reach to the boundary. If there were no reflection, particles would
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proceed under the same dynamics (red line in Fig. 2(b)-(c)). To account for reflection (black line), we consider the Debye

sheath electron potential energy near the wall to be φsh = 20eV = 0.8v2
the. Electrons reaching the wall with vx <

√
0.8

are specularly reflected, and electrons with vx >
√

0.8 are isotropically reflected from the wall with conserving their total

energy. Fig. 2(b)-(c) present 〈v2
z (t)〉 and 〈z2(t)〉 for reflecting boundary (black) and without boundary (red), where 〈〉

denotes the average over number of particles. The duration of strong interaction with the waves and hence the gain of

energy from the waves decrease with increase of particle velocity. Therefore, the rate of energy gain in Fig. 2(b) decreases

with time for both cases. In isotropic reflection, the velocity components of the particle are redistributed randomly in three

directions, a particle with small vy and vx gains more energy from the electrostatic wave compared to that having higher vy

and vx. Therefore, in presence of reflecting boundary, particles gain more energy than in absence of reflection. The dashed

black line marks the location of thruster outlet along the z−direction. Since with reflection they gain more energy, their

mean square displacement along z−direction crosses the thruster outlet, and they exit from the thruster chamber more

quickly than in the case without boundary. For both cases, we found two different diffusion coefficient (D = d〈z2〉/dt),

values, which are (D = 0.08,0.05) for no-reflection and (D = 0.24,0.15) for reflecting boundary. The change in slope

around t = 2×105ω−1
pe is related to the structure of the stochastic web controlling the velocity transport [6, 7].

Due to the chaotic dynamics, in presence of the single wave also we get a crossfield transport along z direction, but

the diffusion coefficient is very small. As the electric field Ey is proportional to ky, waves with different~k values induce

different diffusion coefficients and energy gain rates.

Conclusions

Due to strong interaction with the wave potential, the drifted cyclotron motion becomes chaotic. In presence of more

than one wave electrons gain energy over long time evolution and their temperature is increased. This chaotic dynamics

helps in transport of electrons along the thruster axial direction. Significant amount of axial electron transport is observed

in presence of more than one waves, and the electrons exit from the thruster chamber. The reflection at boundary enhances

the transport coefficient.
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