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1. Introduction

A newly installed neutral beam injector (NBI) combined with the electron cyclotron
heating and current drive (ECH-ECCD) system allows the TCV [1] to contribute to
worldwide (DIII-D, AUG, TJ-II, etc.) research studying wave — fast ion (FI) interaction
phenomena of interest for burning plasma tokamak-based fusion devices, including ITER
and DEMO. Sufficient fast-ion confinement is essential for the success of fusion devices. A
large FI plasma population may, however, excite Alfvén eigenmodes (AEs) that can
degrade fusion performance and increase energetic ion losses through FI transport.

Alfvén mode activity observed on TCV [2,3] during the 2017/18 EUROfusion MST1
campaign, in the presence of simultaneous off-axis sub-Alfvenic NBI (va/3<Vbeam<va) and
off-axis ECRH. The EM fluctuations (AEs and GAMs) were studied from Mirnov signals
and soft-X emission. Their impact on the plasma performance and on FI confinement was
examined by comparing neutron emission rates, total
plasma energy (DML), fast ion D-a (FIDA)
spectra [2] and CX NPA signals from integrated
modelling employing the TRANSP/NUBEAM,
ASTRA and FIDASIM codes.

2. Experimental setup and TCV scenario with

Alfvén modes

The TCV Tokamak (Ro=0.88 m, a<0.25 m) [1] is
characterised by the widest plasma shaping

capability worldwide, the highest ECH power

density, and high flexibility in its heating and control

schemes. The neutral beam injector (NBI) delivers

up to 850 kW power along a tangential (double-pass)  Figure.1: NB, EC and ohmic power; on-

line of sight at energies in the 10-25 keV range. axis electron and ion temperature; on-axis

electron, thermal and FI density in TCV

discharges with on-axis (#62124) and off-
obtain Alfvén velocities below three times the NBI  axis (#62117) NBI: Zg:+11.9&+3.4 cm;

FI velocities (mpx(va/3)*>=23.3 keV for ni=2x10"m" Wowmi:4.39/5.57 kJ

A reduced magnetic field of 1.3 T was chosen to
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Figure.2: Spectrograms from high frequency LTCC-3D magnetic sensors, Mirnov poloidal pick-up coils and
Duplex Multiwire Proportional soft X-ray counter (DMPX). Toroidal Alfvén eigenmodes (TAEs) at 170-
230 kHz; expected TAE frequency at q=1.5, 2.0 &2.5 (solid lines); elongation- induced Alfvén eigenmode
(EAEs) at 310-360 kHz; Energetic particles driven geodesic acoustic modes (EGAMs) at ~80 & 40 kHz.

3) so Alfvén eigenmodes could be excited (29 keV NBI for Br 1.45 T). A plasma current of
121 kA with 400kW of off-axis (ppoi=0.55+£0.07) X2 (89 GHz) ECH heating have been
applied (Fig.1). NBI deposition profiles (on-/off-axis) were studied [2,3] by vertically
displacing magnetic axis (Zo=+3...+15 cm) retaining similar plasma shapes and ECH
profiles. Alfvén activity was observed with Zo=12 cm, with no beam-driven instabilities
detected (1) without ECH, (2) for NB energy <23 keV, (3) at Br>1.35 T, (4) Zo<8 cm and
Zo>14.5 cm.

The EM fluctuation properties (AEs and GAMs) are monitored from the Mirnov signals
and soft-X emission (Fig. 2). TRANSP and ASTRA transport modelling of plasma heating
are used to estimate FI CX losses and current drive from experimental Te, ne and T; profiles
(Fig.3). The high edge neutral density, combined with off-axis NBI population, yields
strong charge-exchange losses (up to 50%). The energy and density of the incoming
neutrals was estimated using KN1D code and baratron pressure gauge measurements with
TRANSP/NUBEAM and FIDASIM used to interpret FIDA and NPA [2,3] measurements.
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Figure.3: Profiles in TRANSP simulation with neoclassical (NC)
and with NC-+anomalous (AD, +0.5/4+1.0 m?/s) fast ion diffusion.

loop voltage (Vroor, = Electron density and temperature from Thomson scattering, ion
0.4...40.6 %) in phases without temperature from CXRS; density of fast and thermal (bulk) ions
TAEs (Fig.4 #62124  and and neutrals are calculated by TRANSP. Fast ion density

multiplied by x5 for off-axis NBI case (TCV#62117).
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Figure.4: DML (MHD) plasma energy and total neutron rate: experiment and TRANSP prediction

#62117@]1.3...1.4 s). Wpmr=3/2W. is sensitive to the FI pressure, the neutron rate depends
on the FI distribution function, Vioop depends on the NBCD. The deviations of
experimental  data  from  neoclassical  expectations (NC)  with  TAEs
(TCV#62117@0.7...1.2 s — WpmL:+6.1...+11 %; neut.:+11...422 %; Vioop:-7.9...-2.7 %)
can be attributed to anomalous FI transport and incorporated by an additional, ad-hoc
0.5...1 m?/s (AD), radial FI diffusion term. The experimental data lie between the NC and
AD  predictions  (NC+lm?s —  Wpm-9.9...-6.2%;  neut.:-21...-8.3 %;
Vioop:+2.1...46.3 %). An anomalous FI diffusion of 0.5...1 m?/s is sufficient to reduce the
FI density (Fig.3) and pressure by a factor of 2.

The CNPA energy distribution and FIDA spectra (Figs. 5&6) agree with FIDASIM [5]
predictions with NC FI diffusion for on-axis NBI (#62124). FIDA signals are over-
predicted with NC and under-predicted with AD (+1m?/s) FI diffusion for off-axis NBI
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Figure.5: Compact NPA energy distribution and TRANSP/NUBEAM/FIDASIM prediction with neoclassical
and anomalous FI diffusion in TCV
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Figure.6: Measured FIDA spectrum compared with predictions from FIDASIM for a central horizontal
(toroidal) line of sight (intersection with NBI at 87.2cm).
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Figure.7: FI density and safetg} factor (q) profiles calculated in ASTRA for TCV dismcharges with different Zo
(vertical shift) — on-/off-axis NBI. TAEs observed in TCV#62117 only.

with TAEs (#62117). The anomalous diffusion in physical (radial) space is insufficient to
simulate the CNPA result in TAE regimes. The theory based representation of FI
anomalous TAE induced redistribution in velocity and coordinate phase space (R,z,E,v/v))
is necessary for detailed fast ion transport modelling.
4. Discussion and perspectives

The comparison of TRANSP/NUBEAM- /FIDASIM modelling with experimental data
indicates clearly the impact of electromagnetic fluctuations (Alfven Eigenmodes) on the FI
distribution function and confinement. TAEs on TCV are observed for a relatively narrow
range of experimental conditions (off-axis NBI and ECH, low Ip and ne). This may be
explained by a dependence of TAE excitation/dumping on beam energy (vns/va), safety
factor (q) and magnetic shear (S) profiles [4]. The dependence of FI density (and pressure)
and current (q-, S-profiles) on the NB deposition (Zo shift, on-/off-axis NBI), illustrated
with ASTRA simulation in Fig.7.

Experimental work in 2019-2021 will benefit from the installation of new diagnostics
(Fast Ion Loss Detector and Imaging Neutral Particle Analyser), installation of a second
high energy (50-60 keV) neutral beam [1] and the availability of more numerical tools.
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