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Magnetic plasma confinement systems with conductors embedded into plasma is an 

important class of magnetic traps with high beta, known as Galateas [1], alternative to the 

mainstream toroidal system designs. As summarized in [2], Galateas are widely diversified, 

and it provides additional reason to consider them, unlike low-beta traps, as the promising 

systems for many plasma technologies and for advanced fuel reactors while the technical 

difficulties arising from the magnetic suspension of the embedded conductors (“myxines”) 

and their operation in reactor conditions can be overcome with present-day technologies.  

The studies of geometric and other parameters of axisymmetric  plasma 

configurations maintained in an equilibrium by the magnetic field of both plasma current and 

toroidal currents in the myxines at zero toroidal field  is based on the solution of the Grad-

Shafranov equation (for recent results see [3,4]).  Various equilibria with complex magnetic 

field surface topology can be realized in Galateas. The use of the unstructured grid ideal 

MHD stability code MHD_NX [5] makes possible plasma stability studies in Galatea traps 

[6]. Apart from the localized convective mode stability criteria (like Rosenbluth-Longmire-

Kadomtsev [2]),  global mode stability calculations in multiply connected plasma domain can 

be performed taking into account a gap between the plasma and the vacuum vessel (external 

modes). For equilibrium configurations in the Galatea magnetic trap “Trimyx” [7,8], the 

dependence of the growth rates of ideal MHD modes with different toroidal wave numbers on 

the pressure magnitude is investigated in this paper. 

1. Plasma equilibrium in Trimyx magnetic trap. The Grad–Shafranov (GS) equation  
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is solved for the axisymmetric equilibrium field 

F      B  without toroidal component F  = 0. The external magnetic field in 

the trap is created by currents in the circular coils (Fig. 1) placed in a conductive cylinder of 

radius R = 0.7 m, -0.4 m < Z < 0.4 m with its boundaries assumed ideally conducting. The 

level lines of the function   for the vacuum magnetic field are determined by solving the GS 

equation with the condition 0   at the computational domain boundary and localized 

current sources ( , )
k k kk

j I R R Z Z     modeling the coil currents. The separatrices and 

X-points of the vacuum magnetic field are determined, and the plasma is assumed located in 

the vicinity of the separatrix of the vacuum magnetic field 
s

  , which encloses three coils 

with the currents flowing in the same direction. The pressure function is prescribed with the 

plasma localized near the separatrix wrapping around the coils in thin layers called mantles: 
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s
p p       with the maximum near the separatrix and the parameter   

controlling the “thickness” of the plasma configuration. Limiting the computational domain 

to magnetic surfaces 
k

   outside the coil locations ( , )k kR Z , it is possible to reduce the 

equilibrium problem to the boundary value problem in the multiply connected domain with 

the uniform right hand side representation /j R dp d   – so-called equilibrium with the 

fixed boundary. The equilibrium presented in [4] with the maximal value of pressure 

0 2 16p    
 
Pa calculated on a rectangular grid was used as a reference one to determine 

the values of 
k

 . Fig. 1b shows the corresponding magnetic surfaces approximated by circles 

around the coils in the (R,Z) plane. The main reason for introducing the internal boundaries is 

to provide a convenient way to set boundary conditions for the stability problem at the 

internal conductors. The nonlinear Dirichlet boundary value problem is solved with the 

standard PDE Toolbox package from Matlab (Fig. 1c) on triangular unstructured grids. For 

the reference equilibrium with the total current in the coils 66 kA = (25+20+20-21) ∙ 1.5 kA, 

the values 3e-3Wb / (2 )
s

  , 1.5e-3Wb / (2 )   and the maximal pressure 

0 2 16p    Pa, the magnitude of the plasma current is 2.67 kA, which corresponds to the 

reference equilibrium. The values of 
k

  are kept fixed in the series of equilibria with 

increasing pressure. Wherein the iterations to solve the nonlinear problem converge up to the 

values of 0p  ten times higher than in the reference equilibrium. 

2. Ideal MHD stability of Galateas. The equilibria on the unstructured triangular grids are 

used as inputs for the ideal stability MHD_NX code [5]. The code has been upgraded to 

include the plasma compressibility term 2| |1 / 2
pV

p dV   ξ into the perturbed potential 

energy functional 
F

W , where  is the adiabatic index, ξ  is plasma displacement vector. The 

boundary conditions at the ideally conducting surfaces are set in terms of perturbed electric 

field: 0 e n , n  is the normal vector to the boundary, ,i   E e e ξ B  assuming 

time dependence exp( t)i . The plasma may either extend up to the conducting surfaces or 

to be separated from the conductors by a vacuum layer outside some magnetic surface. In the 

latter free plasma boundary case, the natural boundary condition at the plasma-vacuum 

interface for the energy principle formulation of the ideal MHD stability problem 
2 0( )VFW W K     corresponds to the linearized total pressure continuity across the 

perturbed plasma boundary. Here 21 / 2 | |
pV

K dV  ξ  is the kinetic energy functional,   

is the mass plasma density assumed to be constant in the plasma volume pV  . 

 In the absence of the toroidal equilibrium field, there are only two projections of the 

perturbed electric field  – normal to magnetic surfaces and along the toroidal direction – due 
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to the ideal MHD condition 0      e B e . The projections of plasma 

displacement 2 / | | / | |/ B             ξ ξB B
 
normal to the equilibrium 

magnetic field are related to the electric field projections onto the orthogonal directions as 

follows: /e B   , /e B    . It can be also shown that for complex amplitudes of the 

toroidal harmonics exp( )n ine  and exp( )n inξ , the projections 2 ,/,n nn n eB    ξ B  

can always be set real which corresponds  to  imaginary ,n ne  .  

 As discussed in the review [2], the most dangerous MHD modes are interchange-type 

“flute” instabilities. For low values of 2

0
2 /p B  , the electric field perturbations are 

potential, i.e. magnetic field is not perturbed, and the Rosenbluth-Longmire-Kadomtsev 
(RLK) stability criterion for such modes takes the form: ( ) / ( )U p p U   n n , where 

n  is the normal to magnetic surface, 1 /U Bdl   is the volume between magnetic surfaces 

with the integral taken over closed magnetic line. 
3. Pressure stability limits. The “min B” condition ( ) / ( ) 0U p p U  n n  is not 

satisfied everywhere in Trimyx. The Ohkawa surface where U reaches its minimal value 

approximately corresponds to the magnetic surface with the pressure 00.96p p  (see the 

inner contour in Fig.1c). So for any toroidal mode number n > 0 the plasma is unstable for 
0   as shown in [6]. But the instability can be suppressed by taking into account the 

plasma compressibility. The growth rate dependence on the maximal pressure magnitude for 
different toroidal mode numbers for 5 / 3   is shown in Fig. 2a. Due to the localized nature 
of flute modes, the higher toroidal mode number n the higher is the growth rate. There is a 

well defined stability limit on the pressure 0p <450 Pa which is not described by the RLK 

criterion, where only logarithmic derivative of pressure enters, and magnetic field deviation 
from the vacuum one and other finite-  effects are not taken into account. The limiting 

pressure value changes with the plasma boundary approaching the Ohkawa surface (Fig. 2b). 
The mode structure is shown in Fig. 2c. Vacuum is assumed outside the magnetic surface 

with pressure 00.5p p  (the outer contour in Fig.1c) which is close to the plasma boundary 

in experiment and is also close to the mode localization. Resulting pressure limit 0p <600 Pa 

( 2

0 0 0
2 / 0.15p B   ) is compatible with the experimental pressure estimate p=750 Pa in 

[8] for the same value of the barrier magnetic field near the Ohkawa surface B=0.1 T. It is 
remarkable that the pressure limit increases for lower toroidal mode numbers with the

00.5p p  plasma boundary up to 0p <700 Pa (
0

0.175  ) for n < 5. We can also note that 

the wall stabilization for the free boundary modes is rather weak even for low toroidal mode 
numbers due to weak magnetic field perturbations in vacuum for flute-type modes. 
4. Conclusions. The growth rates of the ideal MHD stability of the plasma equilibrium 

configurations in the Trimyx Galatea trap with current-carrying conductors immersed in 

plasma are calculated. The unstructured grid ideal MHD stability code MHD_NX was 

upgraded to take into account plasma compressibility. The stability limits of the pressure 
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magnitude in the Trimyx plasma are computed with plasma boundary cut-off from the 

vacuum vessel.  The computed pressure limits are compatible with the experimental data [8]. 

The extension of plasma beyond the Ohkawa surface in the experiment can be explained by 

the compressional stabilization of the flute modes with a possible relation of both the plasma 

boundary extent and the pressure magnitude to the limiting finite-   MHD modes. 
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(a) 
(b) (c) 

Figure 1. a) Current-carrying coils layout in Trimyx; b) Level lines of poloidal flux function for the reference 

equilibrium, the values of 
k

  in Wb / (2 ) at the magnetic surfaces around the coils are given; c) Pressure 

level lines (colorbar in Pa) for the equilibrium recomputed on unstructured triangular grid. Contours of 

Ohkawa surface 
0

0.96p p  and 
0

0.5p p  surface are also shown (thick black lines). 

(a) (b) (c) 

Figure 2. a) Growth rates of most unstable modes for different toroidal mode numbers (shown in legend) vs. 

maximal pressure values, the growth rates are normalized by Alfvén frequency 
0

/ ( )
A

B a    ; b) Growth 

rates of most unstable modes for different toroidal mode numbers with 
0

0.5p p  boundary; c) Contour plot of 

toroidal component of electric field and streamlines of plasma displacement for n=10 mode with 
0

0.5p p  

boundary, 
0

704p Pa , / 0.16
A

   . 
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