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Global MHD stability of plasma in Galatea traps
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Magnetic plasma confinement systems with conductors embedded into plasma is an
important class of magnetic traps with high beta, known as Galateas [1], alternative to the
mainstream toroidal system designs. As summarized in [2], Galateas are widely diversified,
and it provides additional reason to consider them, unlike low-beta traps, as the promising
systems for many plasma technologies and for advanced fuel reactors while the technical
difficulties arising from the magnetic suspension of the embedded conductors (“myxines”)
and their operation in reactor conditions can be overcome with present-day technologies.

The studies of geometric and other parameters of axisymmetric  plasma
configurations maintained in an equilibrium by the magnetic field of both plasma current and
toroidal currents in the myxines at zero toroidal field is based on the solution of the Grad-
Shafranov equation (for recent results see [3,4]). Various equilibria with complex magnetic
field surface topology can be realized in Galateas. The use of the unstructured grid ideal
MHD stability code MHD NX [5] makes possible plasma stability studies in Galatea traps
[6]. Apart from the localized convective mode stability criteria (like Rosenbluth-Longmire-
Kadomtsev [2]), global mode stability calculations in multiply connected plasma domain can
be performed taking into account a gap between the plasma and the vacuum vessel (external
modes). For equilibrium configurations in the Galatea magnetic trap “Trimyx” [7,8], the
dependence of the growth rates of ideal MHD modes with different toroidal wave numbers on
the pressure magnitude is investigated in this paper.

1. Plasma equilibrium in Trimyx magnetic trap. The Grad-Shafranov (GS) equation
V-(VW / Rz) =-4,j,/R is solved for the axisymmetric equilibrium field

B=Vy xV@p+ FV@ without toroidal component F = 0. The external magnetic field in

the trap is created by currents in the circular coils (Fig. 1) placed in a conductive cylinder of
radius R = 0.7 m, -0.4 m < Z <0.4 m with its boundaries assumed ideally conducting. The

level lines of the function ' for the vacuum magnetic field are determined by solving the GS
equation with the condition ¥ =0 at the computational domain boundary and localized
current sources jw = Zk IL6(R-R ,Z —Z ) modeling the coil currents. The separatrices and
X-points of the vacuum magnetic field are determined, and the plasma is assumed located in
the vicinity of the separatrix of the vacuum magnetic field w = y_, which encloses three coils

with the currents flowing in the same direction. The pressure function is prescribed with the

plasma localized near the separatrix wrapping around the coils in thin layers called mantles:
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p (1,//) =p,exp(—(w - zys)2 / 6%) with the maximum near the separatrix and the parameter &
controlling the “thickness” of the plasma configuration. Limiting the computational domain
to magnetic surfaces y =y, outside the coil locations (R ,Z, ), it is possible to reduce the
equilibrium problem to the boundary value problem in the multiply connected domain with
the uniform right hand side representation j, =Rdp/dy - so-called equilibrium with the
fixed boundary. The equilibrium presented in [4] with the maximal value of pressure
P, =27 -16 Pa calculated on a rectangular grid was used as a reference one to determine
the values of v, . Fig. 1b shows the corresponding magnetic surfaces approximated by circles

around the coils in the (R,Z) plane. The main reason for introducing the internal boundaries is
to provide a convenient way to set boundary conditions for the stability problem at the
internal conductors. The nonlinear Dirichlet boundary value problem is solved with the
standard PDE Toolbox package from Matlab (Fig. 1c) on triangular unstructured grids. For
the reference equilibrium with the total current in the coils 66 kA = (25+20+20-21) - 1.5 kA,

the values , =3e-3Wb/(27), O =1.5e-3Wb/(27) and the maximal pressure
P, =27 -16 Pa, the magnitude of the plasma current is 2.67 kA, which corresponds to the

reference equilibrium. The values of w, are kept fixed in the series of equilibria with
increasing pressure. Wherein the iterations to solve the nonlinear problem converge up to the
values of [, ten times higher than in the reference equilibrium.

2. Ideal MHD stability of Galateas. The equilibria on the unstructured triangular grids are
used as inputs for the ideal stability MHD NX code [5]. The code has been upgraded to

include the plasma compressibility term 1/ 2JV I'p|V-&[dV into the perturbed potential

energy functional W_, where I is the adiabatic index, & is plasma displacement vector. The

boundary conditions at the ideally conducting surfaces are set in terms of perturbed electric

field: exn=0, n is the normal vector to the boundary, E =iwe, e =—& x B assuming

time dependence exp(iwt). The plasma may either extend up to the conducting surfaces or

to be separated from the conductors by a vacuum layer outside some magnetic surface. In the
latter free plasma boundary case, the natural boundary condition at the plasma-vacuum

interface for the energy principle formulation of the ideal MHD stability problem

oW_. +W, - @’K) =0 corresponds to the linearized total pressure continuity across the
perturbed plasma boundary. Here K =1/ ZJV p|E7dV is the kinetic energy functional, p

is the mass plasma density assumed to be constant in the plasma volume Vp .

In the absence of the toroidal equilibrium field, there are only two projections of the

perturbed electric field — normal to magnetic surfaces and along the toroidal direction — due
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to the ideal MHD condition e-B=e-ViyxV@=0. The projections of plasma
displacement &, =BxExB/B? = EVy/|Vy |+& V! | V| normal to the equilibrium

magnetic field are related to the electric field projections onto the orthogonal directions as

follows: §, =e, /B, § =-e,/B. It can be also shown that for complex amplitudes of the

toroidal harmonics e, exp(ing) and & exp(ing), the projections &, , 4, =&, B/ B?,e

9 n(p

can always be set real which corresponds to imaginary fmp, € -

As discussed in the review [2], the most dangerous MHD modes are interchange-type
“flute” instabilities. For low values of S=2up/ B*, the electric field perturbations are

potential, i.e. magnetic field is not perturbed, and the Rosenbluth-Longmire-Kadomtsev
(RLK) stability criterion for such modes takes the form: (Un-Vp)/(pn-VU)<TI, where

n is the normal to magnetic surface, U = Il/ Bdl is the volume between magnetic surfaces

with the integral taken over closed magnetic line.

3. Pressure stability limits. The “min B” condition (Un-Vp)/(pn-VU)<0 is not
satisfied everywhere in Trimyx. The Ohkawa surface where U reaches its minimal value
approximately corresponds to the magnetic surface with the pressure p=0.96p, (see the
inner contour in Fig.1c). So for any toroidal mode number n> 0 the plasma is unstable for
I'=0 as shown in [6]. But the instability can be suppressed by taking into account the
plasma compressibility. The growth rate dependence on the maximal pressure magnitude for

different toroidal mode numbers for I' =5/ 3 is shown in Fig. 2a. Due to the localized nature
of flute modes, the higher toroidal mode number n the higher is the growth rate. There is a

well defined stability limit on the pressure p,<450 Pa which is not described by the RLK

criterion, where only logarithmic derivative of pressure enters, and magnetic field deviation
from the vacuum one and other finite- § effects are not taken into account. The limiting

pressure value changes with the plasma boundary approaching the Ohkawa surface (Fig. 2b).
The mode structure is shown in Fig. 2c. Vacuum is assumed outside the magnetic surface

with pressure p = 0.5p, (the outer contour in Fig.1c) which is close to the plasma boundary

in experiment and is also close to the mode localization. Resulting pressure limit p, <600 Pa

(B, =2u,p,/ B* = 0.15) is compatible with the experimental pressure estimate p=750 Pa in

[8] for the same value of the barrier magnetic field near the Ohkawa surface B=0.1 T. It is
remarkable that the pressure limit increases for lower toroidal mode numbers with the
p =0.5p, plasma boundary up to p,<700 Pa (5, =0.175) for n <5. We can also note that

the wall stabilization for the free boundary modes is rather weak even for low toroidal mode
numbers due to weak magnetic field perturbations in vacuum for flute-type modes.
4. Conclusions. The growth rates of the ideal MHD stability of the plasma equilibrium

configurations in the Trimyx Galatea trap with current-carrying conductors immersed in
plasma are calculated. The unstructured grid ideal MHD stability code MHD NX was

upgraded to take into account plasma compressibility. The stability limits of the pressure
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magnitude in the Trimyx plasma are computed with plasma boundary cut-off from the
vacuum vessel. The computed pressure limits are compatible with the experimental data [8].
The extension of plasma beyond the Ohkawa surface in the experiment can be explained by
the compressional stabilization of the flute modes with a possible relation of both the plasma
boundary extent and the pressure magnitude to the limiting finite- # MHD modes.
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Figure 1. a) Current-carrying coils layout in Trimyx; b) Level lines of poloidal flux function for the reference
equilibrium, the values of y_ in Wb/ (27) at the magnetic surfaces around the coils are given; c) Pressure
level lines (colorbar in Pa) for the equilibrium recomputed on unstructured triangular grid. Contours of
Ohkawa surface p =0.96p, and p = 0.5p, surface are also shown (thick black lines).
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Figure 2. a) Growth rates of most unstable modes for different toroidal mode numbers (shown in legend) vs.
maximal pressure values, the growth rates are normalized by Alfvén frequency y, =B/ (a\/;) ; b) Growth
rates of most unstable modes for different toroidal mode numbers with p = 0.5p  boundary; c) Contour plot of
toroidal component of electric field and streamlines of plasma displacement for n=10 mode with p =0.5p,

boundary, p, =704Pa, y/y, =0.16.



