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Abstract. Theoretical and experimental considerations suggest that axisymmetric 

perturbations that are resonant at the X-point(s) of a magnetic divertor separatrix may play a 

role for the understanding of ELMs in tokamaks and their active control via so-called vertical 

kicks. The first step in the development of an analytic model for resistive axisymmetric X-point 

modes is presented, i.e., finding an adequate and relatively simple analytic MHD equilibrium 

for a plasma column with noncircular cross section bounded by a magnetic separatrix.  

The stability of the X-point region of tokamak plasmas with divertor configurations takes on 

great importance in the realization of sustainable H-mode regimes. The toroidal magnetic field 

line going through the X-point is resonant to axisymmetric MHD perturbations1. Thus, when 

resistivity is accounted for, localized current sheets can be driven unstable, leading to a change 

of the X-point topological structure. Such process has been studied extensively in the context 

of astrophysical plasmas2. Therefore, one may suspect that in a tokamak the magnetic X-point 

region may be strongly influenced by axisymmetric MHD perturbations. From an experimental 

viewpoint, observations correlate Type-I giant ELMs with n=0 axisymmetric perturbations. A 

puzzling experimental fact was the rather large shift of the strike points on divertor target plates 

observed during giant ELMs in JET experiments3. It was suggested1 that this large shift could 

be explained by the inferred3 relatively large currents flowing from the magnetic X-point to the 

target plates near both strike points. Another case in point is the question of the vertical kicks 

experiments for active ELM control4. It may be argued that vertical kicks could lead to a change 

of the X-point topology. Yet, in the context of tokamak plasmas, it appears that the theory of 

resonant, resistive axisymmetric X-point modes has not been developed so far. In this article, 

we are concerned with the first step in the development of an analytic model for these modes, 

i.e., finding an adequate and relatively simple analytic MHD equilibrium for a plasma column 

with noncircular cross section bounded by a magnetic separatrix5. An early example is 

Gajewski’s solution6, which we extend by considering finite external currents located at finite 

distance from the magnetic X-points. Another relevant equilibrium solution was proposed 

recently by Xu and Fitzpatrick7. 
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In this article, the cylindrical plasma column extends along the ignorable coordinate z, which 

mimics the toroidal angle 𝜑 of a tokamak configuration. The current density Jz is taken to be 

uniform in space up to a nearly (but not exactly) elliptical cross section with major axis b and 

minor axis a. The external currents are modeled by two equal, parallel current filaments also 

directed along the z-axis and placed symmetrically at distance l from the plasma center, as 

shown in Fig. 1. The X-point coordinates are ±𝑙𝑋, where 

𝑏 < 𝑙𝑋 < 𝑙. We introduce a small expansion parameter,  

𝜌0 =  
𝑏2−𝑎2

𝑙2
           (1) 

The external currents are found to satisfy the condition  

𝐼𝑒𝑥𝑡

𝐼𝑝
=

𝑙4

(𝑎+𝑏)2(𝑎2+𝑏2)
𝜌0 =  

𝑏−𝑎

𝑏+𝑎

𝑙2

(𝑎2+𝑏2)
      (2) 

where 𝐼𝑒𝑥𝑡 is the external current carried by either one of 

the two filaments and 𝐼𝑝 = 𝜋𝑎𝑏𝐽𝑧  is the plasma current. 

Gajewski’s equilibrium6 is recovered in the limit 𝜌0 → 0 and 

𝑙 →  ∞ . In this limit, the surface bounding the plasma 

current becomes exactly elliptical.  

The magnetic field is 𝑩 =  𝐵𝑧𝒆𝒛 +  𝒆𝒛 × ∇ψ, where 𝒆𝒛 is a 

unit vector. The current density is 𝜇0𝑱 =  ∇ × 𝑩 =  ∇𝐵𝑧 × 𝒆𝒛  + ∇2𝜓𝒆𝒛 . The ideal MHD 

equilibrium condition is ∇𝑝 =  𝑱 × 𝑩.  From these equations, 𝐽𝑧 = 𝐽𝑧(𝜓) and therefore ∇2𝜓 =

 𝜇0𝐽𝑧(𝜓) is a nonlinear equation for 𝜓 to be solved subject to appropriate boundary conditions. 

Furthermore, 𝑝 = 𝑝(𝜓) and 𝐵𝑧 =  𝐵𝑧(𝜓). Details of the solution procedure are given in Ref. 

[5]. Here, we outline the main steps. In solving the equilibrium problem, we note that this 

contains three functions of 𝜓 , i.e., 𝐽𝑧(𝜓) , 𝑝 = 𝑝(𝜓)  and 𝐵𝑧 =  𝐵𝑧(𝜓) , of which two can be 

chosen arbitrarily and the third is derived consistently with this choice. We choose 𝐽𝑧(𝜓) = 

constant inside the domain D of the Oxy plane centered at the origin, x = y = 0, bounded by the 

curve 𝐶(𝑥, 𝑦) = 0 (see Fig. 1), which corresponds to an ellipse to leading order in 𝜌0.  

The choice 𝐽𝑧 =  𝐽0 = 𝑐𝑜𝑛𝑠𝑡  inside D converts the equilibrium problem into a linear, 

inhomogeneous partial differential equation. Thus, the equations to be solved are 

∇2𝜓 = 𝜇0𝐽0          inside domain D                          (3)                         

∇2𝜓 = 𝜇0𝐼𝑒𝑥𝑡 ∙ [𝛿(𝑥, 𝑦 − 𝑙) +  𝛿(𝑥, 𝑦 + 𝑙)]      outside domain D,    (4) 

with boundary conditions 𝜓 = 𝜓0 = 𝑐𝑜𝑛𝑠𝑡  on curve 𝐶(𝑥, 𝑦) = 0 , {𝜓} = 0 ,  {𝜕𝜓/𝜕𝑛} = 0 , 

where the angular brackets {𝜙} denote the jump of the generic quantity 𝜙 across the boundary 

of D and 𝒏 is the outer normal. Also, 𝜓~ ln 𝑟 for 𝑟 =  (𝑥2 + 𝑦2)1/2  → ∞, which ensures that 

Figure 1. Magnetic flux surfaces. 

Because of symmetry, only the 

quadrant with positive x and y is 

shown. Parameter values are a/l=2/5, 

b/l=1/2, yielding ρ0 =0.09. The red 

line corresponds to the ellipse with 

semi-axis a and b. 
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the equilibrium magnetic field goes to zero as 𝑟−1  for 𝑟 → ∞ . The difference between our 

approach and Gajewski’s procedure6 can be summarized as follows: (i) Curve C is exactly an 

ellipse in [6], while it differs from an ellipse by terms of order 𝜌0 in our work; (ii) ∇2𝜓 = 0 

outside domain D in [6], while Eq. (4) is used here; (iii) the condition 𝜓~ ln 𝑟 for 𝑟 → ∞ is 

enforced here. 

It is convenient to introduce elliptical coordinates (𝜇, 𝜗), related to Cartesian coordinates by 

𝑥 = 𝐴 sinh 𝜂  sin 𝜗 ; 𝑦 = 𝐴 cosh 𝜂 cos 𝜗 . We set  𝑎 = 𝐴 sinh 𝜂0 ; 𝑏 = 𝐴 cosh 𝜂0 , then 𝐴2 =

 𝑏2 −  𝑎2 and 𝜂 =  𝜂0 defines the boundary 𝐶(𝑥, 𝑦) = 0 of the plasma current to zeroth order 

in the parameter 𝜌0. This boundary is an ellipse with semi-axes a and b. Using the superposition 

principle, the solution for the flux function can be written as 𝜓(𝑥, 𝑦) = 𝜓𝑃(𝑥, 𝑦) + 𝜓𝑒𝑥𝑡(𝑥, 𝑦), 

where 𝜓𝑃 ∝ 𝐼𝑃 is the magnetic flux generated by the plasma current flowing inside domain D 

and 𝜓𝑒𝑥𝑡 ∝ 𝐼𝑒𝑥𝑡  is the magnetic flux generated by the two external current filaments. The 

boundary of D must be a magnetic flux surface of constant 𝜓 . However, 𝜓𝑃(𝑥, 𝑦)  and 

𝜓𝑒𝑥𝑡(𝑥, 𝑦) are not constant over the boundary, only their sum will be. This requirement imposes 

the relationship between 𝐼𝑃 and 𝐼𝑒𝑥𝑡 anticipated in Eq. (2). 

After straightforward algebra, the details of which are given in [5], we find the solution to 

leading order in 𝜌0: 

𝜓(𝑥, 𝑦) = 𝜓0 ∙ (
𝑥2

𝑎2 +
𝑦2

𝑏2)    inside domain D;                   

𝜓(𝜂, 𝜗) =
𝜇0

4𝜋
𝐼𝑃 {1 + 2(𝜂 − 𝜂0) + 𝑒−2𝜂 cos(2𝜗) +

𝑙4

(𝑎+𝑏)2(𝑎2+𝑏2)
𝜌0 ln {1 + 𝜌0[1 +

cosh(2𝜂) cos(2𝜗)] +
1

4
𝜌0

2[cosh(2𝜂) + cos(2𝜗)]2}}     outside domain D. 

An example of this solution is given in Fig. 1, where surfaces of constant 𝜓 are drawn for 𝜌0 =

0.09. We can see that the boundary of domain D is closely approximated by the ellipse 𝜂 = 𝜂0 

(the red curve in the figure). To find the magnetic separatrix, we first solve for the coordinates 

of the X-points, where ∇𝜓 = 0, and subsequently look for the surface of constant flux passing 

through such points. In Gajewski’s limit6 (subscript “G”), one finds 𝜂𝑋𝐺 = 2𝜂0, or equivalently  

𝑙𝑋𝐺 = (𝑎2 + 𝑏2)/(𝑏2 − 𝑎2)1/2, where 𝑙𝑋 is the distance of the X-point from the origin of the 

Oxy plane. Carrying out the calculation to first order in 𝜌0 , we find 𝜂𝑋 = 𝜂𝑋𝐺 − 𝜌0𝜂𝑋1(𝛿) , 

where 𝛿 = 𝑎/𝑏  and 𝜂𝑋1(𝛿) = (1 + 𝛿2)3/[(1 − 𝛿2)(1 + 𝛿)]2 , or equivalently, 𝑙𝑋 = {1 −

[2𝜌0𝜂𝑋1(𝛿)𝛿]/(1 + 𝛿2)}𝑙𝑋𝐺. Figure 2 shows a graph of 𝑙𝑋/𝑙𝑋𝐺, obtained numerically from the 

full solution in Eq. (23), as function of 𝜌0 for fixed 𝛿 = 0.8. The curves stops at 𝜌0 = 𝜌∗, which 

corresponds to the limit where 𝑙𝑋 = 𝑏. The equilibrium solution ceases to be valid for of 𝜌0 >

𝜌∗.  
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In conclusion, we have extended Gajewski’s solution6 

for the equilibrium of a plasma column bounded by a 

magnetic separatrix to the case where the external 

currents are located symmetrically at finite distance 

from the boundary of the plasma current density and the 

latter is distributed uniformly over a domain D bounded 

by a nearly elliptical magnetic flux surface5. Three main 

results are found: (i) The analysis relies on a small 

expansion parameter, 𝜌0 , defined in Eq. (1); to leading 

order in 𝜌0  the boundary of domain D can be 

approximated by an ellipse.  (ii) Equilibrium requires that the external currents, 𝐼𝑒𝑥𝑡, be related 

to the plasma current according to the criterion in Eq. (2). (iii) The geometric structure and 

topology of the magnetic flux surfaces depend on two parameters only: 𝑎/𝑙  and 𝛿 = 𝑎/𝑏, 

where b and a are the major and minor semi-axes of the elliptical boundary, respectively, and 

±𝑙  are the coordinates of the two external current filaments on the y-axis. Gajewski’s 

equilibrium is recovered in the limit 𝑙 → ∞. 

This equilibrium is expected to be unstable to ideal MHD vertical displacements of the plasma 

column. Just like in the case of tokamak plasmas with elongated cross section, we can also 

expect that modulating in time the external currents can stabilize the vertical instability. This 

would mimic the passive feedback stabilization scenario of a tokamak plasma, where time-

dependent image currents are induced on the conducting wall containing the plasma. Of more 

interest will be to study the case of a resistive plasma extending to the magnetic separatrix. A 

vertical plasma displacement would be resonant at the magnetic X-points, giving rise to the 

possibility that current sheets centered at the X-points be driven unstable. In the equivalent 

tokamak scenario, this type of perturbation is what we refer to as resistive axisymmetric X-

point modes1,5. The treatment of these modes will be the subject of a future investigation. 
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Figure 2. X-point coordinate, lX , 

normalized to Gajewski’s limiting value 

lXG, as function of ρ0 and for fixed δ =
0.8 and ρ∗ = 0.32. 
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