46" EPS Conference on Plasma Physics P4.1047

Analytic equilibrium of elongated plasmas bounded by a magnetic

separatrix and the problem of resistive axisymmetric X-point modes
'Franco Porcelli and 2Adil Yolbarsop
"Department of Applied Science and Technology, Polytechnic University of Turin, Italy
2KTX Laboratory, University of Science and Technology of China, Hefei, China

Abstract. Theoretical and experimental considerations suggest that axisymmetric
perturbations that are resonant at the X-point(s) of a magnetic divertor separatrix may play a
role for the understanding of ELMs in tokamaks and their active control via so-called vertical
kicks. The first step in the development of an analytic model for resistive axisymmetric X-point
modes is presented, i.e., finding an adequate and relatively simple analytic MHD equilibrium
for a plasma column with noncircular cross section bounded by a magnetic separatrix.

The stability of the X-point region of tokamak plasmas with divertor configurations takes on
great importance in the realization of sustainable H-mode regimes. The toroidal magnetic field
line going through the X-point is resonant to axisymmetric MHD perturbations'. Thus, when
resistivity is accounted for, localized current sheets can be driven unstable, leading to a change
of the X-point topological structure. Such process has been studied extensively in the context
of astrophysical plasmas®. Therefore, one may suspect that in a tokamak the magnetic X-point
region may be strongly influenced by axisymmetric MHD perturbations. From an experimental
viewpoint, observations correlate Type-I giant ELMs with n=0 axisymmetric perturbations. A
puzzling experimental fact was the rather large shift of the strike points on divertor target plates
observed during giant ELMs in JET experiments®. It was suggested' that this large shift could
be explained by the inferred? relatively large currents flowing from the magnetic X-point to the
target plates near both strike points. Another case in point is the question of the vertical kicks
experiments for active ELM control*. It may be argued that vertical kicks could lead to a change
of the X-point topology. Yet, in the context of tokamak plasmas, it appears that the theory of
resonant, resistive axisymmetric X-point modes has not been developed so far. In this article,
we are concerned with the first step in the development of an analytic model for these modes,
i.e., finding an adequate and relatively simple analytic MHD equilibrium for a plasma column
with noncircular cross section bounded by a magnetic separatrix®. An early example is
Gajewski’s solution®, which we extend by considering finite external currents located at finite
distance from the magnetic X-points. Another relevant equilibrium solution was proposed

recently by Xu and Fitzpatrick’.



46" EPS Conference on Plasma Physics P4.1047

In this article, the cylindrical plasma column extends along the ignorable coordinate z, which
mimics the toroidal angle ¢ of a tokamak configuration. The current density J: is taken to be
uniform in space up to a nearly (but not exactly) elliptical cross section with major axis b and
minor axis a. The external currents are modeled by two equal, parallel current filaments also
directed along the z-axis and placed symmetrically at distance / from the plasma center, as
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shown in Fig. 1. The X-point coordinates are +ly, where

b < ly < l. We introduce a small expansion parameter, @
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The external currents are found to satisfy the condition g
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where I, is the external current carried by either one of ol
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the two filaments and I, = mab]/, is the plasma current. , .
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Figure 1. Magnetic flux surfaces.

Gajewski’s equilibrium® is recovered in the limit py — 0 and Because of symmetry, only the
quadrant with positive x and y is

[ —» oo. In this limit, the surface bounding the plasma shown. Parameter values are a/l=2/5,

o b/1=1/2, yielding py=0.09. The red
current becomes exactly elliptical. line corresponds to the ellipse with

The magnetic field is B = B,e, + e, X Vy, where e, is a semi-axis a andb.

unit vector. The current density is uoJ = VX B = VB, X e, + V?ye,. The ideal MHD
equilibrium condition is Vp = J X B. From these equations, /, = J,() and therefore V1) =
ol () is a nonlinear equation for 1 to be solved subject to appropriate boundary conditions.
Furthermore, p = p(¥) and B, = B,(y). Details of the solution procedure are given in Ref.
[5]. Here, we outline the main steps. In solving the equilibrium problem, we note that this
contains three functions of Y, i.e., J,(¥), p = p(¥) and B, = B,(y), of which two can be
chosen arbitrarily and the third is derived consistently with this choice. We choose J, () =
constant inside the domain D of the Oxy plane centered at the origin, x =y = 0, bounded by the
curve C(x,y) = 0 (see Fig. 1), which corresponds to an ellipse to leading order in p,.

The choice J, = J, = const inside D converts the equilibrium problem into a linear,
inhomogeneous partial differential equation. Thus, the equations to be solved are

V2 = ueo inside domain D (3)
V2 = pgloye - [6(x,y — 1) + 8(x,y +1)]  outside domain D, 4)
with boundary conditions ¥ = ¥, = const on curve C(x,y) =0, {¢} =0, {0y /on} =0,
where the angular brackets {¢} denote the jump of the generic quantity ¢ across the boundary

of D and n is the outer normal. Also, Y~ In7 forr = (x? + y?)*/?2 — oo, which ensures that
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the equilibrium magnetic field goes to zero as r~! for r — co. The difference between our
approach and Gajewski’s procedure® can be summarized as follows: (i) Curve C is exactly an
ellipse in [6], while it differs from an ellipse by terms of order p, in our work; (ii) V2 = 0
outside domain D in [6], while Eq. (4) is used here; (ii1) the condition )~ Inr forr - o is
enforced here.

It is convenient to introduce elliptical coordinates (u, ), related to Cartesian coordinates by
x = A sinhn sin9; y = Acoshn cosd9. We set a = A sinhny; b = Acoshng, then A2 =
b? — a? andn = 1, defines the boundary C(x,y) = 0 of the plasma current to zeroth order
in the parameter p,. This boundary is an ellipse with semi-axes a and b. Using the superposition
principle, the solution for the flux function can be written as ¥(x,y) = Yp(x, V) + Yeore (x, ),
where Yp & Ip is the magnetic flux generated by the plasma current flowing inside domain D
and Py X I,y 1s the magnetic flux generated by the two external current filaments. The
boundary of D must be a magnetic flux surface of constant . However, Yp(x,y) and
Yext (x,y) are not constant over the boundary, only their sum will be. This requirement imposes
the relationship between Ip and I,,; anticipated in Eq. (2).

After straightforward algebra, the details of which are given in [5], we find the solution to
leading order in py:

x2

2
Y(x,y) =y - (; + 2’—2) inside domain D;

l4

Y(n,9) = Z—;Ip {1 +2(n —ny) + e " cos(29) + @roiarn Po In {1 + pol1 +

cosh(2n) cos(29)] + ip(z) [cosh(2n) + cos(219)]2}} outside domain D.

An example of this solution is given in Fig. 1, where surfaces of constant i are drawn for p, =
0.09. We can see that the boundary of domain D is closely approximated by the ellipse n = 1,
(the red curve in the figure). To find the magnetic separatrix, we first solve for the coordinates
of the X-points, where Vi = 0, and subsequently look for the surface of constant flux passing
through such points. In Gajewski’s limit® (subscript “G”), one finds 7x; = 27, or equivalently
lyc = (a® + b?)/(b? — a®)Y/2, where ly is the distance of the X-point from the origin of the
Oxy plane. Carrying out the calculation to first order in py, we find ny = nxg — ponx1(6),
where § = a/b and nyx(6) = (1 +62)3/[(1 —6%)(1 + 6)]?, or equivalently, Iy = {1 —
[2p01x1(8)8]/(1 + §%)}ys. Figure 2 shows a graph of ly /Ly, obtained numerically from the
full solution in Eq. (23), as function of p, for fixed § = 0.8. The curves stops at p, = p., which

corresponds to the limit where ly = b. The equilibrium solution ceases to be valid for of pq >

Pu-
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In conclusion, we have extended Gajewski’s solution®
for the equilibrium of a plasma column bounded by a
magnetic separatrix to the case where the external

currents are located symmetrically at finite distance _¢

from the boundary of the plasma current density and the

latter is distributed uniformly over a domain D bounded

by a nearly elliptical magnetic flux surface®. Three main 0 o1 02 030,
7o

results are found: (i) The analysis relies on a small Figure 2. X-point coordinate, Iy ,

normalized to Gajewski’s limiting value
lxg, as function of p, and for fixed § =

order in p, the boundary of domain D can be 0.8andp, =032

expansion parameter, p,, defined in Eq. (1); to leading

approximated by an ellipse. (ii) Equilibrium requires that the external currents, I,,;, be related
to the plasma current according to the criterion in Eq. (2). (ii1) The geometric structure and
topology of the magnetic flux surfaces depend on two parameters only: a/l and § = a/b,
where b and a are the major and minor semi-axes of the elliptical boundary, respectively, and
+[ are the coordinates of the two external current filaments on the y-axis. Gajewski’s

equilibrium is recovered in the limit [ — oo.

This equilibrium is expected to be unstable to ideal MHD vertical displacements of the plasma
column. Just like in the case of tokamak plasmas with elongated cross section, we can also
expect that modulating in time the external currents can stabilize the vertical instability. This
would mimic the passive feedback stabilization scenario of a tokamak plasma, where time-
dependent image currents are induced on the conducting wall containing the plasma. Of more
interest will be to study the case of a resistive plasma extending to the magnetic separatrix. A
vertical plasma displacement would be resonant at the magnetic X-points, giving rise to the
possibility that current sheets centered at the X-points be driven unstable. In the equivalent
tokamak scenario, this type of perturbation is what we refer to as resistive axisymmetric X-
point modes'~. The treatment of these modes will be the subject of a future investigation.
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