

Dispersion relations for resistive wall modes in tokamaks

V.D. Pustovitov

National Research Centre Kurchatov Institute, Moscow, 123182, Russia, and Moscow Institute of Physics and Technology, Institutsky lane 9, Dolgoprudny, Moscow region, 141700, Russia

Introduction. There is a long-standing opinion that the ideal MHD cannot describe the RWM (resistive wall mode) dynamics in the DIII-D tokamak [1, 2]. This applies even to the robust rotational stabilization [1] that makes plasma stable essentially above the no-wall stability limit predicted by the ideal MHD. Till now no convincing explanation allowing reliable extrapolation to ITER has been proposed, though some computations show [3, 4] that complete RWM stabilization may be possible due to plasma rotation alone within the standard MHD frame.

With various theoretical attempts, thorough experimental studies and impressive results from DIII-D, the uncertainty in the underlying physics illustrated by detailed analysis [2] of a wide spectrum of competing models still remains unresolved, see also [5].

Facing a necessity of expanding the search beyond the limits of conventional MHD, it is natural to build a wider theory by introducing new elements as additions within the established MHD approach, both physically and mathematically. The latter means, in particular, to use the energy principle algorithm [6] as a guide in derivations. Such a strategy has been outlined in [5, 7]. We follow it here with a focus on the dispersion relations for RWMs in tokamaks.

If the outer region with a resistive wall is described as proposed in [8], the resulting dispersion relation for slow modes will be in the form first appeared in [8],

$$\gamma\tau_D = -W_{no}/W_{iw}, \quad (1)$$

but with additional terms due to non-MHD mechanisms [5]. The representation of the magnetic perturbation \mathbf{b} in vacuum in the Haney-Freidberg (HF) method [8] is the approximation that has never (except [9]) been analyzed for consistency. Here, the limitations of the plasma-wall HF electromagnetic coupling [8] are exposed and better solutions proposed. In (1), γ is the real growth rate of \mathbf{b} assumed to vary in time as $\exp(\gamma t)$, W_{iw} and W_{no} are the perturbed energies with and without an ideal wall, and τ_D is given by Eq. (66) in [8]. In the cylindrical approximation [5, 9],

$$2m\tau_D \equiv (1 - x_{pl}^{2m})\tau_w, \quad (2)$$

where $\tau_w \equiv \mu_0\sigma d_w b_w$ (b_w , d_w and σ are the wall minor radius, thickness and conductivity), $x_{pl} \equiv b_{pl}/b_w$ with b_{pl} the plasma minor radius, and m the poloidal mode number.

One generalization of (1) is known, it is so-called kinetic dispersion relation [10]

$$\gamma\tau_D = -(W_{no} + \delta W_k)/(W_{iw} + \delta W_k). \quad (3)$$

Below we derive its replacement covering a much wider area and free from its shortcomings.

It is needed because of a number of reasons discussed in [2] and [5]. One of them is that the assumptions used on the way to (3) greatly restrict its applicability range, which fact is ignored in the approach presented in [10]. However, strong impact of hidden constraints on (3) is evident even without calculations. Larger plasma-wall distance makes $W_{no} \rightarrow W_{iw}$. Then (3) with (2) predicts $\gamma\tau_D = -1$ or unconditional stability for any plasma. This strikingly unphysical result proves that (3) completely fails at small x_{pl} , and so it does at $x_{pl} \rightarrow 1$ too. A search for a narrow window in x_{pl} for formal justification of (3) has never been done in [10] and related studies before. Therefore, reliability of their results based on (3) is, at least, questionable.

Mathematics. A well-established procedure [6, 7] to derive the energy principle, preceding (1) and (3), starts from the linearized force balance equation

$$\rho_0 \frac{\partial^2 \xi}{\partial t^2} = \mathbf{F}_{id}(\xi) + \mathbf{F}_{non}(\xi) \quad (4)$$

(called sometimes an equation of small oscillations) for the displacement ξ from equilibrium. Here ρ_0 is the unperturbed plasma mass density, \mathbf{F}_{non} describes the non-ideal part of the force and/or plasma rotation,

$$\mathbf{F}_{id} = -\nabla \tilde{p} + \mathbf{j}_0 \times \mathbf{b} + \tilde{\mathbf{j}} \times \mathbf{B}_0 \quad (5)$$

is the usual MHD force operator with \mathbf{j}_0 and \mathbf{B}_0 the equilibrium current density and magnetic field, \mathbf{b} and $\tilde{\mathbf{j}} = \nabla \times \mathbf{b} / \mu_0$ the small perturbations, \tilde{p} the pressure perturbation. The operation

$$K_{\eta\xi} \equiv \int_{pl} \frac{\rho_0}{2} \boldsymbol{\eta} \cdot \frac{\partial^2 \xi}{\partial t^2} dV = \frac{1}{2} \int_{pl} \boldsymbol{\eta} \cdot (\mathbf{F}_{id} + \mathbf{F}_{non}) dV \equiv - \left(W_{MHD}(\xi, \boldsymbol{\eta}) - \oint_{pl} \frac{\mathbf{Q} \times \mathbf{b}_e}{2\mu_0} \cdot d\mathbf{S} \right) - W_{non}(\xi, \boldsymbol{\eta}) \quad (6)$$

with a properly selected function $\boldsymbol{\eta}$ ($= \xi, \dot{\xi}, \xi^*$ or $\dot{\xi}^*$, the dot denotes the time derivative) and $\mathbf{Q}(\boldsymbol{\eta})$ (respectively, the vector potential \mathbf{A} , $\dot{\mathbf{A}}$, \mathbf{A}^* or $\dot{\mathbf{A}}^*$) gives a variety of integral energy relations used in theory. In [7], full section VI is devoted to transformations of (6).

With substitutions $\mathbf{b} = \nabla \times (\xi \times \mathbf{B}_0)$, $\tilde{p} = \tilde{p}_{id} \equiv -\xi \cdot \nabla p_0 - \Gamma p_0 \operatorname{div} \xi$ and $\mathbf{B}_0 \cdot d\mathbf{S}_{pl} = 0$ (Γ is the ratio of the specific heats), $\boldsymbol{\eta} = \xi^*$ and, accordingly, $\mathbf{Q} = \mathbf{A}^*$, (6) reduces to

$$K + W_p + W_s + W_{non} = \frac{1}{2\mu_0} \oint_{pl} \varphi_e \mathbf{b}_e^* \cdot d\mathbf{S} = \frac{1}{2\mu_0} \oint_{pl} (\mathbf{A}_e^* \times \mathbf{b}_e) \cdot d\mathbf{S}, \quad (7)$$

where we have used $\mathbf{A}^* \times \nabla \varphi = -\nabla \times (\varphi \mathbf{A}^*) + \varphi \mathbf{b}^*$. The subscript e means external (to the plasma), for other definitions see (33)–(40) in [7]. The whole effect of the external world is accumulated in the surface integrals.

In the HF approach [8] revised and extended in [5, 9], $\mathbf{b} \cdot \mathbf{n}_{pl}$ (\mathbf{n}_{pl} is a unit normal to the plasma) is considered a given function, and the magnetic field \mathbf{b} in the plasma-wall vacuum gap and behind the wall is approximated, as in a circular cylinder, by

$$\mathbf{b}_{HF} = \nabla \varphi_{HF} = \nabla \times \mathbf{A}_{HF} = c_{no} \mathbf{b}_{no} + c_{iw} \mathbf{b}_{iw} \quad (8)$$

with $\mathbf{b}_{no} = \nabla \varphi_{no}$ and $\mathbf{b}_{iw} = \nabla \varphi_{iw}$ the no-wall and ideal-wall solutions of $\nabla^2 \varphi = 0$ such that $\mathbf{n}_{pl} \cdot \nabla \varphi = \mathbf{n}_{pl} \cdot \mathbf{b}$ for each function (and $\mathbf{n}_w \cdot \nabla \varphi_{iw} = 0$). Then $\mathbf{n}_{pl} \cdot (\mathbf{b} - \mathbf{b}_{HF}) = 0$ is satisfied by

$$c_{no} + c_{iw} = 1. \quad (9)$$

The validity of (8) has never been analysed. Therefore, we have to keep $\varphi_e \neq \varphi_{HF}$. Then

$$-\oint_{pl} \varphi_e \mathbf{b}_e^* \cdot d\mathbf{S} = 2\mu_0 [(c_{no} N + c_{iw} I) + \alpha_\varphi], \quad (10)$$

where we have used $\mathbf{b}_{no} = \nabla \varphi_{no}$ defined in the whole space *out* outside the plasma, while

$$2\mu_0 N \equiv \int_{out} |\mathbf{b}_{no}|^2 dV, \quad 2\mu_0 I \equiv \int_{gap} |\mathbf{b}_{id}|^2 dV, \quad 2\mu_0 \alpha_\varphi \equiv \oint_{pl} (\varphi_{HF} - \varphi_e) \mathbf{b}_e^* \cdot d\mathbf{S}. \quad (11)$$

Substitution of (10) into (7) yields, with account of (9),

$$c_{iw} (W_{iw} + W_{add}) + c_{no} (W_{no} + W_{add}) = 0, \quad (12)$$

where $W_{no} \equiv W_p + N$ and $W_{iw} \equiv W_p + I$ are the same conventional MHD integrals as in (1), and

$$W_{add} \equiv K + W_s + W_{non} + \alpha_\varphi. \quad (13)$$

To get a dispersion relation, we have to incorporate the dependence of the right-hand side in (7) on the current induced in the wall. For this purpose, one can use the equality

$$\oint_{pl} (\mathbf{A}_e^* \times \mathbf{b}_e) \cdot d\mathbf{S} = - \int_{out} |\mathbf{b}_e|^2 dV + \mu_0 \int_{wall} \mathbf{A}_e^* \cdot \mathbf{j} dV, \quad (14)$$

supplemented by the Ohm's law for the wall, $\mathbf{j} = \sigma \mathbf{E}_\parallel$ with $\mathbf{E} = -\dot{\mathbf{A}}$ reducing to $\mathbf{E} = -\gamma \mathbf{A}$ for perturbations varying in time as $\exp(\gamma t)$, as in the HF approach [8]. According to (7),

$$-\oint_{pl} (\mathbf{A}_{HF}^* \times \mathbf{b}_{HF}) \cdot d\mathbf{S} = 2\mu_0 [c_{no} N + c_{iw} I - c_{no}^* c_{iw} (I - N)] + \gamma \mu_0 \int_{wall} \sigma |\mathbf{n}_w \times \mathbf{A}_{HF}|^2 dV \quad (15)$$

must be equal to the right-hand side of (10) at $\alpha_\varphi = 0$. This gives us

$$c_{iw} = c_{no} \gamma \tau_D \quad (16)$$

with time constant (greatly different from the resistive wall time $\tau_w \equiv \mu_0 \sigma d_w b_w$)

$$\tau_D \equiv \frac{1}{2(I-N)} \int_{wall} \sigma |\mathbf{n}_w \times \mathbf{A}_{no}|^2 dV. \quad (17)$$

By using (16) we obtain from (12) a replacement of (1) and (3):

$$\gamma \tau_D = -(W_{no} + W_{add}) / (W_{iw} + W_{add}). \quad (18)$$

While W_{no} and W_{iw} are familiar real functions of (in general – complex) ξ , W_{add} is a new element depending on \mathbf{F}_{non} in (4), on $\mathbf{b} - \nabla \times (\xi \times \mathbf{B}_0)$, the non-MHD effects that make $\tilde{p} \neq \tilde{p}_{id}$, and on the difference $\varphi_e - \varphi_{HF}$ resulting in $\alpha_\varphi \neq 0$, see (11) and one example in [9].

Discussion. Note that φ_{HF} is a cylindrical ansatz, its applicability to real toroidal tokamaks is debatable even without mentioning noncircular plasma and wall. The largest error for the use of (1) and (3) obtained with \mathbf{b}_{HF} replacing \mathbf{b} should be expected for compact devices like NSTX.

According to (18), at real W_{add} (simplest case) the stability boundary must be given by

$$W_{no} + W_{add} = 0 \quad (19)$$

instead of $W_{no} = 0$ predicted by (1). The fact that the plasma can be stable in the region where $W_{no} < 0$ implies that W_{add} can be large and positive. Separate studies are needed to find what can make $W_{add} > 0$ and to what extent. Equally or even more important must be $\text{Im}W_{add}$.

Relation (18) derived from the first principles explains why, in the absence of studies allowing to identify or, at least, distinguish the dominating contributions into W_{add} or \mathbf{F}_{non} , the statement “RWM stabilization is best accomplished by a combination of passive *kinetic* stabilization ...” in [11] is wrong. It is based on tenuous use of the HF approach for compact device NSTX, and the claimed “success” [10] is a product of undisclosed manipulations with (3) involving ad hoc selections of parameters. The “kinetic” mechanism is not convincingly demonstrated, the alternative variants have neither been analyzed nor ruled out.

- [1] E. J. Strait, J. Bialek, N. Bogatu, M. Chance, M. S. Chu, et al., Nucl. Fusion **43**, 430 (2003).
- [2] M. S. Chu and M. Okabayashi, Plasma Phys. Control. Fusion **52**, 123001 (2010).
- [3] S. P. Smith, S. C. Jardin, J. P. Freidberg, and L. Guazzotto, Phys. Plasmas **16**, 084504 (2009).
- [4] J. Shiraishi, N. Aiba, N. Miyato, and M. Yagi, Nucl. Fusion **54**, 083008 (2014).
- [5] V. D. Pustovitov, J. Plasma Phys. **81**, 905810609 (2015).
- [6] I. B. Bernstein, E. A. Frieman, M. D. Kruskal, and R. M. Kulsrud, Proc. R. Soc. Lond. A **244**, 17 (1958).
- [7] V. D. Pustovitov, Phys. Plasmas **24**, 112513 (2017).
- [8] S. W. Haney and J. P. Freidberg, Phys. Fluids B **1**, 1637 (1989).
- [9] N. D. Lepikhin and V. D. Pustovitov, Phys. Plasmas **21**, 042504 (2014).
- [10] J. W. Berkery, S. A. Sabbagh, R. E. Bell, S. P. Gerhardt, and B. P. LeBlanc, Phys. Plasmas **24**, 056103 (2017).
- [11] ITER Organization, ITER Research Plan within the Staged Approach (Level III – Provisional Version), Report ITR-18-003 (2018).