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Introduction. There is a long-standing opinion that the ideal MHD cannot describe the RWM
(resistive wall mode) dynamics in the DIII-D tokamak [1, 2]. This applies even to the robust
rotational stabilization [1] that makes plasma stable essentially above the no-wall stability limit
predicted by the ideal MHD. Till now no convincing explanation allowing reliable extrapo-
lation to ITER has been proposed, though some computations show [3, 4] that complete RWM
stabilization may be possible due to plasma rotation alone within the standard MHD frame.

With various theoretical attempts, thorough experimental studies and impressive results
from DIII-D, the uncertainty in the underlying physics illustrated by detailed analysis [2] of a
wide spectrum of competing models still remains unresolved, see also [5].

Facing a necessity of expanding the search beyond the limits of conventional MHD, it is
natural to build a wider theory by introducing new elements as additions within the established
MHD approach, both physically and mathematically. The latter means, in particular, to use the
energy principle algorithm [6] as a guide in derivations. Such a strategy has been outlined in [5,
7]. We follow it here with a focus on the dispersion relations for RWMs in tokamaks.

If the outer region with a resistive wall is described as proposed in [8], the resulting
dispersion relation for slow modes will be in the form first appeared in [8],

yrp =W /W, (1)
but with additional terms due to non-MHD mechanisms [5]. The representation of the magnetic
perturbation b in vacuum in the Haney-Freidberg (HF) method [8] is the approximation that
has never (except [9]) been analyzed for consistency. Here, the limitations of the plasma-wall

HF electromagnetic coupling [8] are exposed and better solutions proposed. In (1), y is the real
growth rate of b assumed to vary in time as exp(st) , W,, and W, are the perturbed energies
with and without an ideal wall, and z, is given by Eqg. (66) in [8]. In the cylindrical
approximation [5, 9],

2mz, =(1-x")z,,, (2)
where 7z, = y,0d b, (b,, d, and o are the wall minor radius, thickness and conductivity),

X, =b, /b, with b the plasma minor radius, and m the poloidal mode number.
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One generalization of (1) is known, it is so-called kinetic dispersion relation [10]
75 =—-(W,, + W, ) I(W,, +W,) . (3)
Below we derive its replacement covering a much wider area and free from its shortcomings.
It is needed because of a number of reasons discussed in [2] and [5]. One of them is that
the assumptions used on the way to (3) greatly restrict its applicability range, which fact is
ignored in the approach presented in [10]. However, strong impact of hidden constraints on (3)

is evident even without calculations. Larger plasma-wall distance makes W, —W,,. Then (3)
with (2) predicts yz, =—1 or unconditional stability for any plasma. This strikingly unphysical

result proves that (3) completely fails at small x,, , and so it does at x,, —1 too. A search for a

pl

narrow window in x,, for formal justification of (3) has never been done in [10] and related

studies before. Therefore, reliability of their results based on (3) is, at least, questionable.
Mathematics. A well-established procedure [6, 7] to derive the energy principle, preceding (1)
and (3), starts from the linearized force balance equation
82&
Po 52

(called sometimes an equation of small oscillations) for the displacement & from equilibrium.

Fld (%) + I:non (%) (4)

Here p, is the unperturbed plasma mass density, F,,, describes the non-ideal part of the force
and/or plasma rotation,

Fid:—V'f)+j0><b+]><B0 (5)
is the usual MHD force operator with j, and B, the equilibrium current density and magnetic

field, b and ] =V xb/ u, the small perturbations, p the pressure perturbation. The operation
8 xb

I 2 gdv - j n-(Fy +Foep)aV = [ o (&) — §3Qze-dSJ—wm<a,n) (6)
pI pl ll’lO

with a properly selected function n (=&, €, & or &, the dot denotes the time derivative) and

Q(n) (respectively, the vector potential A, A, A" or A") gives a variety of integral energy
relations used in theory. In [7], full section V1 is devoted to transformations of (6).
With substitutions b=V x(§xB,), p=py =-&-Vp,—I'p,divg and B,-dS, =0 (T

is the ratio of the specific heats), n=¢&" and, accordingly, Q = A", (6) reduces to

K+wp+ws+wmn:21§¢ebg-ds—§§(A <b,)-ds, ™
0 pl

Opl
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where we have used A" xVp=-V x(pA")+¢b". The subscript e means external (to the

plasma), for other definitions see (33)—(40) in [7]. The whole effect of the external world is
accumulated in the surface integrals.

In the HF approach [8] revised and extended in [5, 9], b-n; (n is a unit normal to the

plasma) is considered a given function, and the magnetic field b in the plasma-wall vacuum
gap and behind the wall is approximated, as in a circular cylinder, by
b =Vo,=VxA,=c,b,+c,b (8)

no - no w™= 1w

with b, =Ve¢,, and b, =Vg,, the no-wall and ideal-wall solutions of V’p=0 such that
n, -Ve=n,-b foreach function (and n, -Vg, =0). Then n - (b-b,.) =0 is satisfied by
Cpo +Cy =1. 9)

The validity of (8) has never been analysed. Therefore, we have to keep ¢, # ¢, . Then

— .0 dS =244[(c,,N +c,, 1)+, ], (10)
pl
where we have used b, =V, defined in the whole space out outside the plasma, while

2N = [ [dv,  2ul= [, dV,  2ua,=f(pu—p)b,-dS.  (11)
pl

out gap
Substitution of (10) into (7) yields, with account of (9),
Ciw Wiy + W) +Co Wi +Wogq) =0, (12)
where W, =W, +N and W,, =W +1 are the same conventional MHD integrals as in (1), and
W, =K+W+W +a,, . (13)
To get a dispersion relation, we have to incorporate the dependence of the right-hand side
in (7) on the current induced in the wall. For this purpose, one can use the equality

f(Aixb)-ds==[lb,dV + s, [A;-jdV, (14)

pl out wall

supplemented by the Ohm’s law for the wall, j=oE, with E =—A reducing to E=—-yA for

perturbations varying in time as exp(y) , as in the HF approach [8]. According to (7),

*

(1=N)]+ 2 [oln, xAudV  (15)

wall

noCiw

—f(A;F xb)-dS=2u,[c, N +c,l-c
pl

must be equal to the right-hand side of (10) at «, =0. This gives us
Ciw = Cno}/z'D (16)

with time constant (greatly different from the resistive wall time 7, = y,0d b, )
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1 2
o Em IG‘nW XAno‘ dV . (17)

wall

By using (16) we obtain from (12) a replacement of (1) and (3):

770 = ~(Woo +Wegy ) /Wiy, +Wegq ) - (18)
While W, and W,, are familiar real functions of (in general — complex) &, W,,, is a new
element depending on F,, in (4), on b—Vx(§xB,), the non-MHD effects that make

p # P, , and on the difference ¢, — ¢, resulting in a, #0, see (11) and one example in [9].

Discussion. Note that ¢, is a cylindrical ansatz, its applicability to real toroidal tokamaks is
debatable even without mentioning noncircular plasma and wall. The largest error for the use of

(1) and (3) obtained with b, replacing b should be expected for compact devices like NSTX.
According to (18), at real W,

al

w (simplest case) the stability boundary must be given by

W, +W,, =0 (19)
instead of W_, =0 predicted by (1). The fact that the plasma can be stable in the region where
W,, <0 implies that W,,, can be large and positive. Separate studies are needed to find what
can make W,,, >0 and to what extent. Equally or even more important must be ImW,,, .

Relation (18) derived from the first principles explains why, in the absence of studies

allowing to identify or, at least, distinguish the dominating contributions into W, or F,, the

statement “RWM stabilization is best accomplished by a combination of passive kinetic
stabilization ...” in [11] is wrong. It is based on tenuous use of the HF approach for compact
device NSTX, and the claimed “success” [10] is a product of undisclosed manipulations with
(3) involving ad hoc selections of parameters. The “kinetic” mechanism is not convincingly

demonstrated, the alternative variants have neither been analyzed nor ruled out.

[1] E. J. Strait, J. Bialek, N. Bogatu, M. Chance, M. S. Chu, et al., Nucl. Fusion 43, 430 (2003).

[2] M. S. Chu and M. Okabayashi, Plasma Phys. Control. Fusion 52, 123001 (2010).

[3] S. P. Smith, S. C. Jardin, J. P. Freidberg, and L. Guazzoto, Phys. Plasmas 16, 084504 (2009).

[4] J. Shiraishi, N. Aiba, N. Miyato, and M. Yagi, Nucl. Fusion 54, 083008 (2014).

[5] V. D. Pustovitov, J. Plasma Phys. 81, 905810609 (2015).

[6] I. B. Bernstein, E. A. Frieman, M. D. Kruskal, and R. M. Kulsrud, Proc. R. Soc. Lond. A 244, 17 (1958).
[7] V. D. Pustovitov, Phys. Plasmas 24, 112513 (2017).

[8] S. W. Haney and J. P. Freidberg, Phys. Fluids B 1, 1637 (1989).

[9] N. D. Lepikhin and V. D. Pustovitov, Phys. Plasmas 21, 042504 (2014)

[10] J. W. Berkery, S. A. Sabbagh, R. E. Bell, S. P. Gerhardt, and B. P. LeBlanc, Phys. Plasmas 24, 056103 (2017).

[11] ITER Organization, ITER Research Plan within the Staged Approach (Level Il — Provisional Version),
Report ITR-18-003 (2018).



