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Introduction. There is a long-standing opinion that the ideal MHD cannot describe the RWM 

(resistive wall mode) dynamics in the DIII-D tokamak [1, 2]. This applies even to the robust 

rotational stabilization [1] that makes plasma stable essentially above the no-wall stability limit 

predicted by the ideal MHD. Till now no convincing explanation allowing reliable extrapo- 

lation to ITER has been proposed, though some computations show [3, 4] that complete RWM 

stabilization may be possible due to plasma rotation alone within the standard MHD frame.  

 With various theoretical attempts, thorough experimental studies and impressive results 

from DIII-D, the uncertainty in the underlying physics illustrated by detailed analysis [2] of a 

wide spectrum of competing models still remains unresolved, see also [5]. 

 Facing a necessity of expanding the search beyond the limits of conventional MHD, it is 

natural to build a wider theory by introducing new elements as additions within the established 

MHD approach, both physically and mathematically. The latter means, in particular, to use the 

energy principle algorithm [6] as a guide in derivations. Such a strategy has been outlined in [5, 

7]. We follow it here with a focus on the dispersion relations for RWMs in tokamaks.  

 If the outer region with a resistive wall is described as proposed in [8], the resulting 

dispersion relation for slow modes will be in the form first appeared in [8],  

 iwnoD WW /−=γτ , (1) 

but with additional terms due to non-MHD mechanisms [5]. The representation of the magnetic 

perturbation b  in vacuum in the Haney-Freidberg (HF) method [8] is the approximation that 

has never (except [9]) been analyzed for consistency. Here, the limitations of the plasma-wall 

HF electromagnetic coupling [8] are exposed and better solutions proposed. In (1), γ  is the real 

growth rate of b  assumed to vary in time as )exp( tγ , iwW  and noW  are the perturbed energies 

with and without an ideal wall, and Dτ  is given by Eq. (66) in [8]. In the cylindrical 

approximation [5, 9], 

 w
m

plD xm ττ )1(2 2−≡ , (2) 

where www bdσµτ 0≡  ( wb , wd  and σ  are the wall minor radius, thickness and conductivity), 

wplpl bbx /≡  with plb  the plasma minor radius, and m  the poloidal mode number.  
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 One generalization of (1) is known, it is so-called kinetic dispersion relation [10] 

 )/()( kiwknoD WWWW δδγτ ++−= . (3) 

Below we derive its replacement covering a much wider area and free from its shortcomings. 

 It is needed because of a number of reasons discussed in [2] and [5]. One of them is that 

the assumptions used on the way to (3) greatly restrict its applicability range, which fact is 

ignored in the approach presented in [10]. However, strong impact of hidden constraints on (3) 

is evident even without calculations. Larger plasma-wall distance makes iwno WW → . Then (3) 

with (2) predicts 1−=Dγτ  or unconditional stability for any plasma. This strikingly unphysical 

result proves that (3) completely fails at small plx , and so it does at 1→plx  too. A search for a 

narrow window in plx  for formal justification of (3) has never been done in [10] and related 

studies before. Therefore, reliability of their results based on (3) is, at least, questionable. 

Mathematics. A well-established procedure [6, 7] to derive the energy principle, preceding (1) 

and (3), starts from the linearized force balance equation  

)()(2

2

0 ξFξFξ
nonidt

+=
∂
∂ρ      (4) 

(called sometimes an equation of small oscillations) for the displacement ξ  from equilibrium. 

Here 0ρ  is the unperturbed plasma mass density, nonF  describes the non-ideal part of the force 

and/or plasma rotation,  

00
~~ BjbjF ×+×+−∇= pid      (5) 

is the usual MHD force operator with 0j  and 0B  the equilibrium current density and magnetic 

field, b  and 0/~ µbj ×∇=  the small perturbations, p~  the pressure perturbation. The operation 
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with a properly selected function η  ( ξ= , ξ , *ξ  or *ξ , the dot denotes the time derivative) and 

)(ηQ  (respectively, the vector potential A , A , *A  or *A ) gives a variety of integral energy 

relations used in theory. In [7], full section VI is devoted to transformations of (6).  

 With substitutions )( 0Bξb ××∇= , ξξ div~~
00 pppp id Γ−∇⋅−≡=  and 00 =⋅ pldSB  (Γ  

is the ratio of the specific heats), *ξη =  and, accordingly, *AQ = , (6) reduces to 
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where we have used *** )( bAA ϕϕϕ +×−∇=∇× . The subscript e means external (to the 

plasma), for other definitions see (33)–(40) in [7]. The whole effect of the external world is 

accumulated in the surface integrals.  

 In the HF approach [8] revised and extended in [5, 9], plnb ⋅  ( pln  is a unit normal to the 

plasma) is considered a given function, and the magnetic field b  in the plasma-wall vacuum 

gap and behind the wall is approximated, as in a circular cylinder, by 

iwiwnonoHFHFHF cc bbAb +=×∇=∇= ϕ     (8) 

with nono ϕ∇=b  and iwiw ϕ∇=b  the no-wall and ideal-wall solutions of 02 =∇ ϕ  such that 

bnn ⋅=∇⋅ plpl ϕ  for each function (and 0=∇⋅ iww ϕn ). Then 0)( =−⋅ HFpl bbn  is satisfied by 

1=+ iwno cc .      (9) 

 The validity of (8) has never been analysed. Therefore, we have to keep HFe ϕϕ ≠ . Then 

])[(2 0
*

ϕαµϕ ++=⋅− ∫ IcNcd iwno
pl

ee Sb ,    (10) 

where we have used nono ϕ∇=b  defined in the whole space out outside the plasma, while 

∫≡
out

no dVN 2
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pl
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Substitution of (10) into (7) yields, with account of (9), 

0)()( =+++ addnonoaddiwiw WWcWWc ,    (12) 

where NWW pno +≡  and IWW piw +≡  are the same conventional MHD integrals as in (1), and  

ϕα+++≡ nonsadd WWKW .      (13) 

 To get a dispersion relation, we have to incorporate the dependence of the right-hand side 

in (7) on the current induced in the wall. For this purpose, one can use the equality  

∫∫∫ ⋅+−=⋅×
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2* )( µ ,    (14) 

supplemented by the Ohm’s law for the wall, ||Ej σ=  with AE −=  reducing to AE γ−=  for 

perturbations varying in time as )exp( tγ , as in the HF approach [8]. According to (7), 

∫∫ ×+−−+=⋅×−
wall
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pl
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must be equal to the right-hand side of (10) at 0=ϕα . This gives us  

Dnoiw cc γτ=       (16) 

with time constant (greatly different from the resistive wall time www bdσµτ 0≡ ) 
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By using (16) we obtain from (12) a replacement of (1) and (3): 

 )/()( addiwaddnoD WWWW ++−=γτ . (18) 

While noW  and iwW  are familiar real functions of (in general – complex) ξ , addW  is a new 

element depending on nonF  in (4), on )( 0Bξb ××∇− , the non-MHD effects that make 

idpp ~~ ≠ , and on the difference HFe ϕϕ −  resulting in 0≠ϕα , see (11) and one example in [9].  

Discussion. Note that HFϕ  is a cylindrical ansatz, its applicability to real toroidal tokamaks is 

debatable even without mentioning noncircular plasma and wall. The largest error for the use of 

(1) and (3) obtained with HFb  replacing b  should be expected for compact devices like NSTX. 

 According to (18), at real addW  (simplest case) the stability boundary must be given by  

 0=+ addno WW  (19) 

instead of 0=noW  predicted by (1). The fact that the plasma can be stable in the region where 

0<noW  implies that addW  can be large and positive. Separate studies are needed to find what 

can make 0>addW  and to what extent. Equally or even more important must be addWIm . 

 Relation (18) derived from the first principles explains why, in the absence of studies 

allowing to identify or, at least, distinguish the dominating contributions into addW  or nonF , the 

statement “RWM stabilization is best accomplished by a combination of passive kinetic 

stabilization …” in [11] is wrong. It is based on tenuous use of the HF approach for compact 

device NSTX, and the claimed “success” [10] is a product of undisclosed manipulations with 

(3) involving ad hoc selections of parameters. The “kinetic” mechanism is not convincingly 

demonstrated, the alternative variants have neither been analyzed nor ruled out. 
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