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The present contribution is motivated by the lack of tools to study the stability properties of

plasma configurations that include magnetic islands and stochastic regions. These equilibrium

solutions do not assume the existence of nested closed magnetic surfaces and can not be easily

tackled analytically, instead codes like SIESTA [1] construct them numerically. As an example,

Wendelstein 7-X depends on our capabilities to keep the X-points of its islands and the diver-

tors aligned, hence the pressing need to understand the stability properties of such complex

configurations.

Smooth Particle Hydrodynamics, or SPH for short, is a Lagrangian numerical method de-

signed to solve the equations of hydrodynamics commonly used to simulate galaxy dynamics,

and solar plasmas by the astrophysical community. The method was first introduced in the 70’s

by Gingold and Monaghan [2] together with Lucy [3]. In SPH all fields are "carried by the par-

ticles" and are evaluated via interpolation formulas, in contrast to what is done in other methods

such as particle-in-cell (PIC) codes. This interpolation procedure allows us to discretise the

spatial derivatives on a co-moving frame and to obtain evolution equations for the particle’s

position, velocity, mass density, internal energy and magnetic field.
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Evolution equations of the system (eqs.1, 2, 3 and 4)1 are constructed by identifying the

Lagrangian of the system, and minimising the corresponding action functional [4]. The resulting

equation of motion poseses conservation properties linked to the invariants of the Lagrangian

function which are responsible for most of the success that SPH has had lately.

1Here, W is gaussian-like interpolating kernel, The notation rab = ra− rb and similarly for the velocity and

the magnetic field. Wab =W (|rab|) and ∇Wab =−rabFab. The factor Ω is included to account the spatially varying

H-field. Finally we have S=−(p+B2/2µ0)I+BB/µ0
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Using SPH to simulate the non-linear temporal evolution of three-dimensional MHD systems

with fusion-relevant geometries requires us to overcome the following challenges: Prescribe and

enforce appropriate boundary conditions on curved conducting walls and replicate arbitrary

initial conditions with high-fidelity. Solutions to these challenges have been recently developed

(See [5], [6] and [7]) and have allowed us to tackle cylindrical and toroidal scenarios.

For cylindrical geometries, we consider a Theta-pinch and a Zeta-pinch configuration as listed

in [8]. We initialise the particles using the ALARIC algorithm to place them in an homogeneous

initial density profile (see fig. 1).

Figure 1: Cylindrical pinch Initial Condition

Their stability properties can

be evaluated analytically lead-

ing to: Unconditional stability

for the theta pinch and insta-

bility for the zeta pinch for

poloidal wave numbers m ∈

{0,1} and aggravated by large

azimuthal wave numbers k 7→

∞. These results are illustrated

in fig.2 where the final snapshot (at t = 7tA) of the Theta-pinch radial profiles (left) and the

constant pressure iso-surfaces of the plasma column (right) are shown. Here the profiles have

remain unchanged. In contrast, fig.3 shows a Zeta-pinch after a similar period of time and we

can see how the radial profiles, initially a thin line, become noisy due to the radial projection of

the kinked plasma column (rightmost part of fig.3).

Figure 2: Theta Pinch final snapshot Figure 3: Zeta Pinch final snapshot
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Figure 4: High-beta tokamak Initial Condition

For toroidal geometries we

have performed a set of sim-

ulations with aspect ratio R0/a=

3 and circular cross sec-

tion where the initial con-

dition (Soloviev equilibrium

profiles) have been constructed

on top a flat density profile obtained with ALARIC (see fig.4)

We initialized the system with the following particular equilibrium solutions to the Grad-

Shafranov equation:
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This particular solution2 is illustrated in fig. 5 and is only an approximate solution to the

Grad-Shafranov equation. That is, at t = 0 the forces are not completely balanced (See 6).

Figure 5: Equilibrium solution ψ0 Figure 6: Force balance at t = 0

The the temporal evolution of this initial condition does not present any macroscopic changes

during the simulation period. In fact, by looking at fig.7 and fig.8 no significant changes in the

topology of the magnetic configuration can be seen.

However, a closer look at the time trace of the kinetic energy reveals a small oscillation that

seems to damp and converge to a true equilibrium. The precise signal in fig. 9 seems to be

2Here, the following considerations have been used:
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Figure 7: Magnetic streamlines at t = 0 Figure 8: Magnetic streamlines at t = 10τA

Figure 9: Kinetic Energy time trace for Soloviev’s solution

composed of two main components: A short oscillation with an approximate period of τA and

a longer oscillation (9τA). The amplitude of the oscillation presents a damped/convergent be-

haviour that hints at the proximity of a stable configuration around which the systems oscillates.

The results obtained here show that SPH can be used to simulate non-linear dynamics of

MHD systems in fusion-relevant scenarios including toroidal geometries with circular cross-

section. Furthermore, the particular simulation of the Soloviev equilibrium seems to suggest a

stable configurations that would oscillate towards a true equilibrium. In this respect, the prospect

of using SPH as a numerical tool to find true equilibria is suggested.
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