
Energy Balance During Disruptions 

 

N. Isernia, V. Scalera, C. Serpico, F. Villone 

Consorzio CREATE, DIETI, Università degli Studi di Napoli Federico II, Italy 

 

1. Introduction 

One of the major threats for the integrity of future fusion devices are disruptions [1], i.e. events 

during which the plasma energy content is lost on a very fast time scale and can be released 

under various forms to the structures circumventing the plasma. The typical chain of events 

during a disruption is the following. When a given operational limit is exceeded on at least one 

of the main plasma parameters (e.g. density, pressure, safety factor etc.), a fast instability 

occurs, leading to a very fast plasma cool down (Thermal Quench, TQ). As a consequence, 

plasma resistivity increases dramatically, giving rise to a rapid current decay (Current Quench, 

CQ), leading to the termination of the experiment. During such phases, control of the vertical 

position is often lost, causing a Vertical Displacement Event (VDE). 

During a disruption, significant heat, particle and electromagnetic loads may arise on the 

surrounding structures, which may cause non negligible damage. It is hence fundamental to 

study and quantify the energy exchange between the plasma and the structures. Being a fusion 

plasma an intrinsically multiphysics system, particular care must be taken when deriving an 

overall energy balance. This problem has been also tackled in [2-5]. 

The analysis of disruptions is usually carried out by coupling in cascade several different 

models: detailed plasma models [6,7], accounting for the plasma behavior during transient 

phases (e.g. TQ and CQ); evolutionary equilibrium models [8,9] to describe the electromagnetic 

interaction of plasma with surrounding structures during the event and predict the 

electromagnetic loads; thermal models [10] to evaluate the thermal loads. This approach does 

not allow easily a comprehensive understanding of the actual energy exchange mechanism 

during such events. This paper instead provides a framework in which electromagnetics, 

mechanics and thermodynamics are simultaneously taken into account in order to pursue a 

complete energy balance. The paper is organized as follows. Section 2 is devoted to the 

derivation of the energy balance, while Section 3 applies the general framework to a specific 

case study, using the CarMa0NL [9] code to compute the various quantities in the energy 

balance. 
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2. Energy balance 

Supposing that the one-fluid MHD equations describe the system [11], the following equations 

must be considered. 

 Poynting theorem. This is a direct consequence of Maxwell’s equations only and can be 

interpreted in terms of electromagnetic power balance, involving the variation of toroidal 

and poloidal magnetic energy 𝑊௠௔௚,௣௢௟ + 𝑊௠௔௚,௧௢௥, the work done on charge careers and 

the flux ௌ of Poynting vector.  

 Kinetic energy balance. This is derived from the momentum balance equation and states 

that kinetic energy 𝐾 varies due to work done both by pressure force and by Lorentz force. 

 Internal energy balance. From thermodynamics, we know that plasma internal energy 𝑈 

may vary due to deformation work, heat flux 𝑑𝑄  (bremmstrahlung, radiation losses, 

external heating, etc.) and Joule losses. 

None of these equations can be considered alone, since each is coupled to the others by one or 

more terms. Combining all these relations and integrating in time, we obtain the energy balance 

over a fixed volume: 

∆𝐾 + ∆𝑈 + ∆𝑊௠௔௚,௣௢௟ + ∆𝑊௠௔௚,௧௢௥ = −∆𝑄 − ∫ ௌ 𝑑𝑡
௧మ

௧భ
   (1) 

where the symbol ∆ indicates difference in time of the various quantities at instant 𝑡ଶ and 𝑡ଵ 

and ∆𝑄 = ∫ 𝑑𝑄
௧మ

௧భ
. As spatial integration domain, we consider the fixed region 𝑉௙௪ delimited 

by the inner side of the first wall 𝜕𝑉௙௪. We call 𝑆௙௪ its poloidal cross section and 𝜕𝑆௙௪ its 

contour (a line in the poloidal plane). We assume axisymmetry inside 𝑉௙௪ and no halo currents. 

The quantity 𝐾  is the (macroscopic) plasma kinetic energy. It is usually assumed that the 

plasma inertia can be safely neglected during disruptions [12], which is certainly true on a time 

scale much longer than Alfvén time. In this hypothesis, this term will be neglected. 

The internal energy at any time instant can be written as: 

𝑈(𝑡) = ම 𝑢(𝑡) 𝑑𝑉
௏೑ೢ

= ම 𝑢(𝑡) 𝑑𝑉
௏೛(௧)

 

since the internal energy density 𝑢(𝑡)  vanishes outside the plasma volume 𝑉௣(𝑡) , whose 

poloidal cross section is 𝑆௣(𝑡). For a classical ideal gas with three degrees of freedom, the 

plasma pressure is equal to 𝑝(𝑡) = ( − 1)𝑢(𝑡), where  =
ହ

ଷ
, so that the internal energy 𝑈(𝑡) 

is proportional to “pressure energy” 𝑊௣௥௘௦௦(𝑡): 

𝑈(𝑡) =
1

 − 1
ම 𝑝(𝑡) 𝑑𝑉

௏೛(௧)

=
2𝜋

 − 1
ඵ 𝑝(𝑡) 𝑟 𝑑𝑆

ௌ೛(௧)

=
1

 − 1
𝑊௣௥௘௦௦(𝑡) 
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The energy of the toroidal magnetic field 𝐵௧௢௥ =
௙

௥
 can be expressed as: 

𝑊௠௔௚,௧௢௥(𝑡) = ම
𝐵௧௢௥

ଶ

2𝜇଴
 𝑑𝑉

௏೑ೢ

=
1

2𝜇଴
ඵ

𝑓ଶ

𝑟ଶ
2𝜋𝑟 𝑑𝑆

ௌ೑ೢ

=
𝜋

𝜇଴
ඵ

𝑓ଶ

𝑟
𝑑𝑆

ௌ೑ೢ

 

The poloidal magnetic energy can be written as: 

𝑊௠௔௚,௣௢௟(𝑡) = ම
𝐵௣௢௟

ଶ

2𝜇଴
 𝑑𝑉

௏೑ೢ

= ම
|∇|ଶ

2𝜇଴𝑟ଶ
 𝑑𝑉

௏೑ೢ

=
𝜋

𝜇଴
ඵ

|∇|ଶ

𝑟
𝑑𝑆

ௌ೑ೢ

 

where  is the poloidal magnetic flux per radian.  

The flux of the Poynting vector is: 

ௌ = ඵ (𝐸ത × 𝐻ഥ) ∙ 𝑛ො 𝑑𝑆
డ௏೑ೢ

= ඵ ൫𝐸ത௧௢௥ × 𝐻ഥ௣௢௟ + 𝐸ത௣௢௟ × 𝐻ഥ௧௢௥൯ ∙ 𝑛ො 𝑑𝑆
డ௏೑ೢ

 

ௌଵ = ඵ ൫𝐸ത௧௢௥ × 𝐻ഥ௣௢௟൯ ∙ 𝑛ො 𝑑𝑆
డ௏೑ೢ

= −
2𝜋

𝜇଴
න

𝑑
𝑑𝑡

1

𝑟

𝜕
𝜕𝑛

 𝑑𝑙
డୗ೑ೢ

 

ௌଶ = ඵ ൫𝐸ത௣௢௟ × 𝐻ഥ௧௢௥൯ ∙ 𝑛ො 𝑑𝑆
డ௏೑ೢ

= −
2𝜋

𝜇଴
𝑓଴

𝑑𝜙௧௢௥

𝑑𝑡
  

where 𝑓଴ is the value of 𝑓 due to TF coils current and to the poloidal current in the vacuum 

vessel, and 𝜙௧௢௥ is the flux of the toroidal magnetic field thorugh 𝑆௙௪. 

Combining some of the terms of (1) we get: 

∆𝑊௠௔௚,௧௢௥ + න ௌଶ 𝑑𝑡
௧మ

௧భ

=
𝜋

𝜇଴
ඵ

1

𝑟
ቆ𝑓ଶ(𝑡ଶ) − 𝑓ଶ(𝑡ଵ) − න 2𝑓଴

𝑑𝑓

𝑑𝑡
𝑑𝑡

௧మ

௧భ

ቇ  𝑑𝑆
ௌ೑ೢ

 

If the toroidal field due to external poloidal currents overwhelms that produced by the plasma 

(𝑓଴ ≫ 𝑓 − 𝑓଴), it results 
ௗ௙మ

ௗ௧
= 2𝑓

ௗ௙

ௗ௧
≈ 2𝑓଴

ௗ௙

ௗ௧
 , so that the variation of the toroidal magnetic 

energy is almost compensated by the flux of one of the components of the Poynting vector [2].  

 

3. Case study  

The energy balance equation (1) is applied to a disruptive plasma; the various quantities are 

computed with the CarMa0NL code [8]. We analyze a fictitious circular tokamak (Fig. 1); the 

reference plasma configuration has major radius 1.00 m, minor radius 0.20 m, internal 

inductance 1.125, poloidal beta 0.586, plasma current 1.5 MA. 

The disruption is simulated as a Thermal Quench, bringing to zero the poloidal beta in 0.1 ms, 

followed by a Current Quench, with a linear decay of the toroidal current of 1 MA/ms. 

Assuming as initial time instant 𝑡ଵ the start of the TQ, Fig. 1 reports the various quantities 

defined in (1). We notice that in fact, as expected, the variation of the toroidal magnetic energy 
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is almost perfectly compensated by the time integral of the portion ௌଶ of the Poynting vector 

flux. By the way, in the case under analysis, the contribution to the toroidal magnetic flux of 

the poloidal current induced in the vessel is not negligible, as compared to the toroidal flux due 

to plasma poloidal current. Conversely, no compensation occurs between the variation of the 

poloidal magnetic energy and the time integral of the portion ௌଵof the Poynting vector flux; 

this is coherent with experimental findings [2-4]. Consequently, in the specific case under 

consideration, the heat flux is almost equal to the time variation of internal energy only during 

the TQ.  
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Figure 1. Reference equilibrium configuration and quantities defined in (1) for the case study under analysis 
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