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Introduction Geodesic acoustic modes (GAMs) of a global character are frequently observed 
in tokamak plasmas. While many aspects of GAMs require a kinetic treatment, the MHD 
model offers a suitable framework for analytically studying various global aspects of these 
modes, including the global magnetic perturbations associated with the GAM [1]. Here we 
extend the analysis in [1] in order to study additional global aspects of GAMs. We show that 
the 𝑚𝑚 = 0 and 𝑚𝑚 = 1 components of the GAM eigenfunctions have singularities of type 
(𝜓𝜓 − 𝜓𝜓0)−1, where 𝜓𝜓 is a flux function that labels the magnetic surfaces, and 𝜓𝜓 = 𝜓𝜓0 defines 
the singular surface [2]. These components extend from the plasma centre to the edge and are 
therefore both singular and of a global character. We also calculate the effects of a finite aspect 
ratio and a non-circular plasma cross section on the GAM frequency, and recover the depend-
ence on inverse aspect ratio and Shafranov shift of the GAM frequency previously derived 
within gyrokinetic theory by Gao [3]. Furthermore, we show that there is a higher-order trian-
gularity effect that, in addition to the previously known strong effect of elongation on the GAM 
frequency, also can be significant. The calculated triangularity effect predicts a nearly linearly 
increasing GAM frequency with increasing triangularity, a phenomenon observed also in TCV.  
 
Plasma geometry We consider a toroidal plasma with large aspect ratio (𝜀𝜀 ~ 𝑟𝑟 𝑅𝑅0⁄ ≪ 1) and 
non-circular cross section. We model the non-circularity in terms of the Fourier ellipticity 𝐸𝐸(𝑟𝑟) 
and Fourier triangularity 𝑇𝑇(𝑟𝑟) such that the shape of the flux surfaces is described by 
 
 𝜌𝜌𝑠𝑠′(𝑟𝑟, 𝜔𝜔′) = 𝑟𝑟 + 𝐸𝐸 cos 2𝜔𝜔′ + 𝑇𝑇 cos 3𝜔𝜔′ + ⋯  (1) 
 
where (𝜌𝜌′, 𝜔𝜔′) is a local polar coordinate system with origin at the centre of the flux surface 
with radius 𝑟𝑟. We also consider the coefficients 𝐸𝐸 and 𝑇𝑇 to be of the same order of magnitude 
as the Shafranov shift ∆, i.e. ∆ 𝑟𝑟⁄  ~ 𝐸𝐸 𝑟𝑟⁄  ~ 𝑇𝑇 𝑟𝑟⁄  ~ 𝜀𝜀 . In terms of the usual shaping parameters 
𝜅𝜅 (elongation) and 𝛿𝛿 (triangularity) we have, to first order in 𝜀𝜀,  𝜅𝜅 = 1 − 2𝐸𝐸 𝑟𝑟⁄  and 𝛿𝛿 = 4𝑇𝑇 𝑟𝑟⁄ . 
Extensions of these relations to second order in 𝜀𝜀 are derived in [4]. 
 
GAM eigenfunction The calculations are performed using a flux coordinate system (𝑟𝑟, 𝜃𝜃, 𝜑𝜑) 
in which the plasma perturbation 𝛏𝛏 and the perturbed magnetic field 𝐐𝐐 are represented by their 
contravariant components, i.e. 𝛏𝛏 = 𝜉𝜉𝑖𝑖𝐞𝐞𝑖𝑖 and 𝐐𝐐 = 𝑄𝑄𝑖𝑖𝐞𝐞𝑖𝑖. For a GAM eigenfunction expressed in 
terms of 𝛏𝛏 and 𝑄𝑄𝜑𝜑, we include the leading-order 𝑚𝑚 = 0, 1,2  components in [1], the terms in 
[1] generated by the plasma non-circularity (denoted 𝜉𝜉𝑁𝑁𝑁𝑁 here), the component 𝜉𝜉0

𝜃𝜃(2) (omitted 
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in [1]), plus the higher-order components 𝜉𝜉1
𝑟𝑟(3), 𝜉𝜉1

𝜃𝜃(3), 𝜉𝜉1
𝜑𝜑(3) and 𝑄𝑄1

𝜑𝜑(6) [4]: 
 
𝜉𝜉𝑟𝑟 = 𝜀𝜀2𝜉𝜉2

𝑟𝑟(2) sin 2𝜃𝜃 + 𝜀𝜀3𝜉𝜉𝑁𝑁𝑁𝑁
𝑟𝑟(3) + 𝜀𝜀3𝜉𝜉1

𝑟𝑟(3) sin 𝜃𝜃 …   (2a) 

𝜉𝜉𝜃𝜃 = 𝜉𝜉0
𝜃𝜃(0) + 𝜀𝜀𝜉𝜉1

𝜃𝜃(1) cos 𝜃𝜃 + 𝜀𝜀2 �𝜉𝜉0
𝜃𝜃(2) + 𝜉𝜉2

𝜃𝜃(2)� cos 2𝜃𝜃 + 𝜀𝜀2𝜉𝜉𝑁𝑁𝑁𝑁
𝜃𝜃(2) + 𝜀𝜀3𝜉𝜉1

𝜃𝜃(3) cos 𝜃𝜃 + ⋯   (2b) 

𝜉𝜉𝜑𝜑 = 𝜀𝜀𝜉𝜉1
𝜑𝜑(1) cos 𝜃𝜃 + 𝜀𝜀2�𝜉𝜉0

𝜑𝜑(2) + 𝜉𝜉2
𝜑𝜑(2)� cos 2𝜃𝜃 + 𝜀𝜀2𝜉𝜉𝑁𝑁𝑁𝑁

𝜑𝜑(2) + 𝜀𝜀3𝜉𝜉1
𝜑𝜑(3) cos 𝜃𝜃 + ⋯      (2c) 

𝑄𝑄𝜑𝜑 = 𝜀𝜀4𝑄𝑄1
𝜑𝜑(4) sin 𝜃𝜃 + 𝜀𝜀5𝑄𝑄2

𝜑𝜑(5) sin 2𝜃𝜃 + 𝜀𝜀5𝑄𝑄𝑁𝑁𝑁𝑁
𝜑𝜑(5) + 𝜀𝜀6𝑄𝑄1

𝜑𝜑(6) sin 𝜃𝜃 + ⋯       (2d) 
 
The other two components of 𝐐𝐐 can be obtained from 𝑄𝑄𝜃𝜃 = −𝐽𝐽−1 𝜕𝜕�𝐽𝐽𝐵𝐵𝜃𝜃𝜉𝜉𝑟𝑟� 𝜕𝜕𝜕𝜕⁄  and 𝑄𝑄𝑟𝑟 =
𝐵𝐵𝜃𝜃 𝜕𝜕𝜉𝜉𝑟𝑟 𝜕𝜕𝜕𝜕⁄  [1]. The main purpose of the massive expansion above is to determine 𝜉𝜉0

𝜃𝜃(2) and 
the shift of the GAM frequency from the sixth-order component 𝐿𝐿0

(6) in the expansion 
 
𝐿𝐿 = 𝜀𝜀3𝐿𝐿1

(3) cos 𝜃𝜃 + 𝜀𝜀4 ∑ 𝐿𝐿𝑚𝑚
(4) cos𝑚𝑚𝑚𝑚𝑚𝑚=0−4 + 𝜀𝜀5 ∑ 𝐿𝐿𝑚𝑚

(5) cos𝑚𝑚𝑚𝑚𝑚𝑚=1−5 + 𝜀𝜀6𝐿𝐿0
(6) + ⋯ = 0  (3) 

 
where 𝐿𝐿 = 𝐞𝐞𝜃𝜃 ∙ [𝜌𝜌𝜔𝜔2𝛏𝛏 − ∇(𝛿𝛿𝛿𝛿) + (𝐁𝐁 ∙ ∇)𝐐𝐐 + (𝐐𝐐 ∙ ∇)𝐁𝐁], 𝛿𝛿𝛿𝛿 = −𝛏𝛏 ∙ ∇𝑝𝑝 − Γ𝑝𝑝(∇ ∙ 𝛏𝛏) + 𝐁𝐁 ∙ 𝐐𝐐, 
𝐁𝐁 is the equilibrium magnetic field and 𝑝𝑝 the equilibrium pressure. 
 After a computer-algebra calculation, employing a self-consistent equilibrium and simi-
lar expansions as Eq. (3) of the 𝑟𝑟- and 𝜑𝜑-components of the equation of motion, and of the 𝜑𝜑-
component of the “frozen flux” equation, we obtain the following expression for 𝐿𝐿0

(6)[4]: 
 

𝐿𝐿0
(6) = �𝜔𝜔𝐺𝐺𝐺𝐺𝐺𝐺

2 (𝑟𝑟)−𝜔𝜔𝐺𝐺𝐺𝐺𝐺𝐺
2 (𝑟𝑟0)�𝜌𝜌𝜔𝜔𝐺𝐺𝐺𝐺𝐺𝐺

2 (𝑟𝑟0)𝑟𝑟2

𝜔𝜔𝑠𝑠
2𝜇𝜇2−𝜔𝜔𝐺𝐺𝐺𝐺𝐺𝐺

2 (𝑟𝑟0) 𝜉𝜉0
𝜃𝜃(2) − 𝑟𝑟𝑟𝑟𝜔𝜔𝑠𝑠

2𝜔𝜔𝐺𝐺𝐺𝐺𝐺𝐺
2 (𝑟𝑟0)

2�𝜔𝜔𝑠𝑠
2𝜇𝜇2−𝜔𝜔𝐺𝐺𝐺𝐺𝐺𝐺

2 (𝑟𝑟0)�
�𝑟𝑟 𝑑𝑑𝜉𝜉

�
2
𝑟𝑟(2)

𝑑𝑑𝑑𝑑
+ 3𝜉𝜉2

𝑟𝑟(2)�  
 
          +Ξ(𝑟𝑟, 𝑝𝑝, 𝜇𝜇, Δ, 𝐸𝐸, 𝑇𝑇, 𝛿𝛿𝛿𝛿2)𝜉𝜉0

𝜃𝜃(0)(𝑟𝑟)  (4) 
 
where 𝜔𝜔𝑠𝑠2 = Γ𝑝𝑝(𝑟𝑟) 𝜌𝜌(𝑟𝑟)𝑅𝑅02⁄ , 𝜔𝜔𝐺𝐺𝐺𝐺𝐺𝐺

2 = (2 + 𝜇𝜇2)𝜔𝜔𝑠𝑠2 is the GAM frequency to lowest order in 𝜀𝜀, 
𝜇𝜇 ≡ 𝑞𝑞−1, and 𝛿𝛿𝛿𝛿2 denotes a second-order shift of the GAM frequency. Furthermore, the tilde 
notation in 𝜉𝜉0

𝜃𝜃(2) and 𝜉𝜉2
𝑟𝑟(2) indicates that these components exist outside the singular (GAM) 

surface, while the component 𝜉𝜉0
𝜃𝜃(0)(𝑟𝑟) = 𝑎𝑎𝜉𝜉𝛿𝛿(𝑟𝑟 − 𝑟𝑟0) only exists at 𝑟𝑟 = 𝑟𝑟0. 

 
Singular GAM components Eq. (4) and the requirement that 𝐿𝐿0

(6) = 0 outside 𝑟𝑟 = 𝑟𝑟0 gives 
 

𝜉𝜉0
𝜃𝜃(2)(𝑟𝑟) = 𝜔𝜔𝑠𝑠

2(𝑟𝑟)
2𝑟𝑟�𝜔𝜔𝐺𝐺𝐺𝐺𝐺𝐺

2 (𝑟𝑟)−𝜔𝜔𝐺𝐺𝐺𝐺𝐺𝐺
2 (𝑟𝑟0)�

�𝑟𝑟 𝑑𝑑𝜉𝜉
�
2
𝑟𝑟(2)

𝑑𝑑𝑑𝑑
+ 3𝜉𝜉2

𝑟𝑟(2)�    (5) 
 
Thus, if 𝑑𝑑𝜔𝜔𝐺𝐺𝐺𝐺𝐺𝐺

2 𝑑𝑑𝑑𝑑⁄ ≠ 0,  𝜉𝜉0
𝜃𝜃(2) behaves like (𝑟𝑟 − 𝑟𝑟0)−1 [or  like (𝜓𝜓 − 𝜓𝜓0)−1 if 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ ≠ 0 at 

𝑟𝑟 = 𝑟𝑟0], near 𝑟𝑟 = 𝑟𝑟0. In the calculation of 𝐿𝐿0
(6) in Eq. (4), 𝜉𝜉1

𝜃𝜃(3), 𝜉𝜉1
𝜑𝜑(3) and 𝑄𝑄1

𝜑𝜑(6) in Eq. (2) are 
also obtained. These components are also found to be singular near 𝑟𝑟 = 𝑟𝑟0, and can be ex-
pressed in terms of 𝜉𝜉0

𝜃𝜃(2) as [4]: 𝜉𝜉1
𝜑𝜑(3) = (𝜇𝜇𝜇𝜇 𝑅𝑅0⁄ )𝜉𝜉0

𝜃𝜃(2), 𝜉𝜉1
𝜃𝜃(3) ≅ (𝜇𝜇2𝑟𝑟 𝑅𝑅0⁄ )𝜉𝜉0

𝜃𝜃(2) and 𝑄𝑄�1
𝜑𝜑(6) ≅

−[𝑟𝑟𝑟𝑟𝜔𝜔𝐺𝐺𝐺𝐺𝐺𝐺
2 (𝑟𝑟0) 𝐵𝐵0⁄ ]𝜉𝜉0

𝜃𝜃(2). As a consequence, the characteristic 𝑚𝑚 = 0 and 𝑚𝑚 = 1 flow pattern 
of the GAM existing at the singular surface also exists in the form of an identical flow pattern 
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consisting of the singular components  above  outside the singular surface.   The existence of 
these singular components outside 𝑟𝑟 = 𝑟𝑟0 gives the 
characteristic 𝑚𝑚 = 0 and 𝑚𝑚 = 1 components of the 
“eigenfunction” of a continuum GAM a finite ra-
dial extension and a global character, illustrated in 
Fig. 1 with the profiles of 𝑟𝑟𝜉𝜉0

𝜃𝜃(2) (𝑚𝑚 = 0), 

𝑅𝑅0𝜉𝜉1
𝜑𝜑(3)(𝑚𝑚 = 1), 𝑅𝑅0�∇ ∙ 𝛏𝛏��1

(3)
 (𝑚𝑚 = 1) (related to 

the density and pressure fluctuations), as well as the 
radial profile of 𝜉𝜉2

𝑟𝑟(2) (𝑚𝑚 = 2). The 𝑞𝑞-profile is 
given by 𝑞𝑞(𝑟𝑟) = 1 + 3(𝑟𝑟 𝑎𝑎⁄ )4 and 𝑟𝑟0 = 0.7𝑎𝑎. In 
addition to the singularity (𝑟𝑟 − 𝑟𝑟0)−1 of the tangen-
tial components of 𝛏𝛏�, the normal component 𝜉𝜉𝑟𝑟 has 
a logarithmic singularity at 𝑟𝑟 = 𝑟𝑟0 [2, 4], illustrated 
by the dotted curves in the figure. 

Shift of the GAM frequency Since 𝐿𝐿0
(6) has to be zero also at 𝑟𝑟 = 𝑟𝑟0 it follows from Eq. (4) 

that we must have Ξ = 0 at 𝑟𝑟 = 𝑟𝑟0. This determines the shift of the GAM frequency induced 
by finite aspect ratio, ellipticity and triangularity. Including the full dependence on 𝑞𝑞 ≡ 𝜇𝜇−1 it 
turns out that Ξ = 0 leads to the following, modified GAM frequency [4] 
 
𝜔𝜔𝐺𝐺𝐺𝐺𝐺𝐺
2

𝜔𝜔�𝐺𝐺𝐺𝐺𝐺𝐺
2 = 1 + 1

𝜇𝜇2+2
�𝑑𝑑𝐸𝐸
𝑑𝑑𝑑𝑑

+ 3𝐸𝐸
𝑟𝑟
� + � ∆′

3𝜇𝜇2−2
+ 𝑟𝑟�𝜇𝜇4+𝜇𝜇2+6�

6𝑅𝑅0(𝜇𝜇2+2)2 + 4𝑟𝑟𝜇𝜇2�𝜇𝜇2−2�
3𝑅𝑅0(𝜇𝜇2+2)2(3𝜇𝜇2−2)� �

𝑑𝑑𝑇𝑇
𝑑𝑑𝑑𝑑

+ 4𝑇𝑇
𝑟𝑟
�  

 

         − �15𝜇𝜇2−2��∆′�
2

2(𝜇𝜇2+2)(3𝜇𝜇2−2) + 𝑟𝑟�15𝜇𝜇4+9𝜇𝜇2−10�∆′

2𝑅𝑅0(𝜇𝜇2+2)(3𝜇𝜇2−2) −
𝑟𝑟2�12𝜇𝜇6+5𝜇𝜇4+28𝜇𝜇2−24�

4𝑅𝑅02(𝜇𝜇2+2)(3𝜇𝜇2−2) − 𝛽𝛽∗(𝑟𝑟)�4𝜇𝜇2+1�
4𝜇𝜇2

  
 

         − 2𝜇𝜇2

3(𝜇𝜇2+2)(3𝜇𝜇2−2) �
𝑑𝑑𝑇𝑇
𝑑𝑑𝑑𝑑

+ 4𝑇𝑇
𝑟𝑟
�
2
− 40𝜇𝜇2

3(𝜇𝜇2+2)(15𝜇𝜇2−2) �
𝑑𝑑𝑇𝑇
𝑑𝑑𝑑𝑑
− 2𝑇𝑇

𝑟𝑟
�
2
− 9𝜇𝜇2

2(𝜇𝜇2+2)(4𝜇𝜇2−1) �
𝑑𝑑𝐸𝐸
𝑑𝑑𝑑𝑑
− 𝐸𝐸

𝑟𝑟
�
2
 (6) 

 
where 𝛽𝛽∗ = Γ𝑝𝑝 𝐵𝐵02⁄  and 𝜔𝜔�𝐺𝐺𝐺𝐺𝐺𝐺2 = [Γ𝑝𝑝 𝜌𝜌(𝑅𝑅0 + ∆)2⁄ ](2 + 1 𝑞𝑞2⁄ ). Expressing 𝐸𝐸 and 𝑇𝑇 in terms 
of 𝜅𝜅 and 𝛿𝛿, assuming that 𝑞𝑞 ≫ 1, and neglecting the 𝛽𝛽∗-term as well as the nonlinear terms in 
𝐸𝐸 and 𝑇𝑇, the following, simplified version of Eq. (6) can be derived [4] 
 
𝜔𝜔𝐺𝐺𝐺𝐺𝐺𝐺
2

2𝑐𝑐𝑠𝑠2 𝑅𝑅2⁄ ≅ 1 − 2 𝜅𝜅−1
𝜅𝜅+1

− 𝑟𝑟𝜅𝜅′

(𝜅𝜅+1)2 + � 𝑟𝑟
16𝑅𝑅0

− ∆′

8
� �6𝛿𝛿 + 𝑟𝑟2 �𝛿𝛿

𝑟𝑟
�
′
� − �1 − 6.5

𝑞𝑞2
� �∆

′�2

4
+ 5𝑟𝑟∆′

4𝑅𝑅0
− 3

2
� 𝑟𝑟
𝑅𝑅0
�
2
  

 
                 +χ0(𝑟𝑟)𝛿𝛿𝑎𝑎2   (7) 

where 𝛿𝛿𝑎𝑎 is the edge triangularity and χ0(𝑟𝑟) depends on the 𝑞𝑞-profile [4]. For a plasma with 
circular cross section, the frequency shift 𝛿𝛿𝜔𝜔𝐺𝐺𝐺𝐺𝐺𝐺 due to a finite aspect ratio that one obtains 
from Eq. (7) reproduces, in the limit 𝑞𝑞 → ∞, the frequency shift derived by Gao using gyroki-
netic theory [3]. 
 Fig. 2(a) shows 𝜔𝜔𝐺𝐺𝐺𝐺𝐺𝐺 vs 𝛿𝛿𝑎𝑎 including the effect of beta (and associated Shafranov shift Δ’). 
The solid curves in this figure are based on the full Eq. (6) while the dashed curves are obtained 
from Eq. (7). Other parameters in this figure are 𝜅𝜅𝑎𝑎 = 1.3, 𝜀𝜀𝑎𝑎 = 0.2, 𝑞𝑞(𝑟𝑟) = 1 + 3(𝑟𝑟/𝑎𝑎)2, 

Fig. 1. Singular 𝑚𝑚 = 0, 𝑚𝑚 = 1 and 𝑚𝑚 =2 
components of a continuum GAM with the   
singular surface at 𝑟𝑟0 = 0.7𝑎𝑎. 
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𝑟𝑟0 𝑎𝑎⁄ = 0.95 and 𝑝𝑝(𝑟𝑟) = 𝑝𝑝0[1 − (𝑟𝑟 𝑎𝑎⁄ )2]2. A corresponding, experimental scan of 𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺 vs 𝛿𝛿 
in the TCV tokamak is shown in Fig. 2(b). The discharges used for this plot are similar to those 
described by Huang et al. [5], where the scan in triangularity was obtained while trying to keep 
all other relevant parameters constant (as constant as possible). 
 

 

 

 

 

 

 

 

 

 

 
 
Conclusions The individual “eigenmodes” of the GAM continuum in tokamaks have much 
broader radial profiles than what has been known previously. The reason is that the GAM 
eigenmodes include global 𝑚𝑚 = 0 and 𝑚𝑚 = 1 components of the plasma flow, and global com-
ponents of the density and pressure perturbations (also with 𝑚𝑚 = 1) that have singularities of 
type (𝑟𝑟 − 𝑟𝑟0)−1 near the GAM surface (see Fig.1). In this respect, the GAM eigenmodes have 
similar properties as all other eigenmodes in the continuous MHD spectrum of axisymmetric, 
toroidal plasmas [2]. It is possible [4] that this globality of the 𝑚𝑚 = 0 and 𝑚𝑚 = 1 components 
of a single continuum GAM may have something to do with the “GAM eigenmodes” detected 
in several tokamaks. Another result we obtain from the same calculation is the shift of the 
GAM frequency due to a finite aspect ratio (including the effect of the Shafranov shift deriva-
tive ∆′), and due to a non-circular plasma cross section. We find, in particular, a triangularity 
effect that predicts a nearly linearly increasing GAM frequency with increasing triangularity, 
a phenomenon observed also in TCV. A comparison is shown in Fig. 2, and a remarkably 
similar dependence is seen in the analytic triangularity prediction and the experimental data. 
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Fig. 2. (a) Dependence of the GAM frequency on 𝛿𝛿𝑎𝑎 and 𝛽𝛽(0), calculated from Eq. (6). 𝐻𝐻 ≡ 𝜔𝜔𝐺𝐺𝐺𝐺𝐺𝐺 𝜔𝜔�𝐺𝐺𝐺𝐺𝐺𝐺⁄ ,    
𝜅𝜅𝑎𝑎 = 1.3, 𝜀𝜀𝑎𝑎 = 0.2, 𝑞𝑞(𝑟𝑟) = 1 + 3(𝑟𝑟/𝑎𝑎)2 and 𝑟𝑟0 𝑎𝑎⁄ = 0.95. The dashed curves are calculated from Eq. (7). 
(b) GAM frequency vs edge triangularity measured in TCV (courtesy of Z. Huang and S. Coda). 

(b) 

0.66

0.72

0.78

0.84

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

β(0) = 0 %
β(0) = 1 %
β(0) = 2 %

δ
a

H

(a) ∆' = 0

∆' = - 0.10

∆' = - 0.36

∆' = - 0.62

46th EPS Conference on Plasma Physics P4.1054


