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Introduction Geodesic acoustic modes (GAMSs) of a global character are frequently observed
in tokamak plasmas. While many aspects of GAMs require a Kinetic treatment, the MHD
model offers a suitable framework for analytically studying various global aspects of these
modes, including the global magnetic perturbations associated with the GAM [1]. Here we
extend the analysis in [1] in order to study additional global aspects of GAMs. We show that
the m = 0 and m = 1 components of the GAM eigenfunctions have singularities of type
(Y — o)~ L, where o is a flux function that labels the magnetic surfaces, and ¥ = 1, defines
the singular surface [2]. These components extend from the plasma centre to the edge and are
therefore both singular and of a global character. We also calculate the effects of a finite aspect
ratio and a non-circular plasma cross section on the GAM frequency, and recover the depend-
ence on inverse aspect ratio and Shafranov shift of the GAM frequency previously derived
within gyrokinetic theory by Gao [3]. Furthermore, we show that there is a higher-order trian-
gularity effect that, in addition to the previously known strong effect of elongation on the GAM
frequency, also can be significant. The calculated triangularity effect predicts a nearly linearly
increasing GAM frequency with increasing triangularity, a phenomenon observed also in TCV.

Plasma geometry We consider a toroidal plasma with large aspect ratio (¢ ~ /R, «< 1) and
non-circular cross section. We model the non-circularity in terms of the Fourier ellipticity E (1)
and Fourier triangularity T'(r) such that the shape of the flux surfaces is described by

pe(r,w')=r+Ecos2w' + T cos3w’ + - 1)

where (p’, w") is a local polar coordinate system with origin at the centre of the flux surface
with radius r. We also consider the coefficients E and T to be of the same order of magnitude
as the Shafranov shiftA,i.e.A/r ~ E/r ~ T/r ~ ¢ . Interms of the usual shaping parameters
k (elongation) and & (triangularity) we have, to first orderine, k =1 — 2E/rand § = 4T /r.
Extensions of these relations to second order in ¢ are derived in [4].

GAM eigenfunction The calculations are performed using a flux coordinate system (r, 6, ¢)
in which the plasma perturbation & and the perturbed magnetic field Q are represented by their
contravariant components, i.e. £ = £‘e; and Q = Q'e;. For a GAM eigenfunction expressed in
terms of § and Q¥, we include the leading-order m = 0,1,2 components in [1], the terms in

[1] generated by the plasma non-circularity (denoted &y here), the component 53@ (omitted
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in [1]), plus the higher-order components &, £7® £#®) and Q#® [4]:

& =260 Psin 20 + €361 + £3¢7 ¥ sin g .. (2a)
§0 =@ 4 ee%M cosh + ¢ (fo @ 4 59(2)) 05260 + 260D 4+ 6367 056 + - (2b)
£2 = e£?@ cos O + 82(550(2) + €<p(2)) c0s 20 + 289D + £369P cos g + --- (2c)
Q? = *Q?Wsin6 + 502 sin 26 + €502 + QP @ sin 6 + --- (2d)

The other two components of Q can be obtained from Q% = —J~* a(]B"fr)/ar and Q" =
B? 0™ /06 [1]. The main purpose of the massive expansion above is to determine gg’@) and
the shift of the GAM frequency from the sixth-order component LEf) in the expansion

L=e3cosO+e* Y moo_a L cosmb + €% Ypo1_s L cosmo + £6LE)6) +--=0 (3)

where L =eg - [pw?E—V(6P)+ (B-V)Q+ (Q:-V)B], 6P =-§-Vp—Tp(V-¥) +B-Q,
B is the equilibrium magnetic field and p the equilibrium pressure.

After a computer-algebra calculation, employing a self-consistent equilibrium and simi-
lar expansions as Eqg. (3) of the r- and ¢p-components of the equation of motion, and of the ¢-
component of the “frozen flux” equation, we obtain the following expression for Lff) [4]:

16 _ [08an®=0iam(0)]pogam ) 6(2) _ _rpwiogam ) (r aB® | 3{(2))
0 Wi =g 4y (10) 0 Z[wgﬂz_wéAM(TO)] ar

VE( DA E, T, 80280 (1) )

where w? = I'p(r)/p(r)R3, wéay = (2 + u?)w? is the GAM frequency to lowest order in &,
u = q~1 and Sw? denotes a second-order shift of the GAM frequency. Furthermore, the tilde
notation in 59(2) and Er(z) indicates that these components exist outside the singular (GAM)
surface, while the component & 6(0) (r) = aé§(r —rp) only exists at r = 7.

Singular GAM components Eq. (4) and the requirement that L(6) = 0 outside r = r,, gives
£9 () = wi(r) (r ag® 4 51‘(2)) -
0 2r[wE oy () —wE ap (r0)] dr

Thus, if dw? sy /dr # 0, £2® behaves like (r — ,) ™" [or like ( — o)~ if dyp/dr # 0 at
r = 1p], near r = r,. In the calculation of L in Eq. (4), £7®, £#® and Q¥ in Eq. (2) are
also obtained. These components are also found to be singular near r = r,, and can be ex-
pressed in terms of £0® as [4]: £7®) = (ur/R)EZP, E9® = (u2r/R)ESP and QP© =
—[rpw? Ay (1) /Bo]g;(‘)9 @ Asa consequence, the characteristic m = 0 and m = 1 flow pattern
of the GAM existing at the singular surface also exists in the form of an identical flow pattern



46" EPS Conference on Plasma Physics P4.1054

consisting of the singular components above outside the singular surface. The existence of
these singular components outside r = r,, gives the
characteristic m = 0 and m = 1 components of the
“eigenfunction” of a continuum GAM a finite ra-
dial extension and a global character, illustrated in

Fig. 1 with the profiles of r&!® (m =0),
RyE?P(m = 1), Ry(V - 2)23) (m = 1) (related to
the density and pressure fluctuations), as well as the

Rodiv(g)f)
radial profile of ngr(z) (m = 2). The g-profile is

given by q(r) =1+ 3(r/a)* and r, = 0.7a. In
02 0.4 Ha addition to the singularity (r — r,) ™! of the tangen-
Fig. 1. Singularm = 0,m = 1andm =2 tial components of &, the normal component ™ has
components of a continuum GAM with the g logarithmic singularity at r = r, [2, 4], illustrated
singular surface at r, = 0.7a. by the dotted curves in the figure.

o & A N o N N O ©®
T -

o

Shift of the GAM frequency Since Lgf) has to be zero also at r = ry it follows from Eq. (4)
that we must have £ = 0 at r = r,. This determines the shift of the GAM frequency induced
by finite aspect ratio, ellipticity and triangularity. Including the full dependence on g = u~1 it
turns out that £ = 0 leads to the following, modified GAM frequency [4]

‘”‘2“”‘4—1 1 (dE 35) [ A r(u*+u?+6) 4rp?(p?-2 ](dT+4T)
@2am w2+2 \dr = r 3u2-2 © 6Re(u2+2)2 = 3Ry(u2+2)23u2-2)I\ar = r

(15u2-2)(8")°  r(15p*+9u?-10)a"  r2(12uS+5ut+28u2-24)  B*(r)(ap?+1)
2(u2+2)(3u%-2) = 2Ro(u2+2)(3u%-2) 4R§(u?+2)(3u?-2) 4pu?

o r  am\? _ 40w ar _2r\* _ o dE _E)?
3(u2+2)(3u2-2) (dr t T ) 3(u%2+2)(15u2-2) (dr T ) 2(u%+2)(4u2-1) (dr r) (6)

where * = T'p/B2 and @%,,, = [[p/p(Ry + A)?](2 + 1/q?). Expressing E and T in terms
of k and §, assuming that g > 1, and neglecting the §*-term as well as the nonlinear terms in
E and T, the following, simplified version of Eq. (6) can be derived [4]

e 125 e (- Do+ (] (-4 -3

2c2/R? Kk+1  (k+1)? 16Rg r q?) 4 4Ry 2 \R,

+Xo ()62 (7)
where &, is the edge triangularity and y,(r) depends on the g-profile [4]. For a plasma with
circular cross section, the frequency shift w4y, due to a finite aspect ratio that one obtains
from Eq. (7) reproduces, in the limit g — oo, the frequency shift derived by Gao using gyroki-
netic theory [3].

Fig. 2(a) shows w4y VS 8, including the effect of beta (and associated Shafranov shift A’).
The solid curves in this figure are based on the full Eq. (6) while the dashed curves are obtained
from Eq. (7). Other parameters in this figure are k, = 1.3, &, = 0.2, q(v) = 1 + 3(r/a)?,
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ro/a = 0.95 and p(r) = po[1 — (r/a)?]?. A corresponding, experimental scan of f; 4, Vs &
in the TCV tokamak is shown in Fig. 2(b). The discharges used for this plot are similar to those
described by Huang et al. [5], where the scan in triangularity was obtained while trying to keep
all other relevant parameters constant (as constant as possible).
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Fig. 2. (a) Dependence of the GAM frequency on &, and (0), calculated from Eq. (6). H = wgam/@Dgam:
ke = 13,6, =0.2,q(r) =1+ 3(r/a)? and ry/a = 0.95. The dashed curves are calculated from Eq. (7).
(b) GAM frequency vs edge triangularity measured in TCV (courtesy of Z. Huang and S. Coda).

Conclusions The individual “eigenmodes” of the GAM continuum in tokamaks have much
broader radial profiles than what has been known previously. The reason is that the GAM
eigenmodes include global m = 0 and m = 1 components of the plasma flow, and global com-
ponents of the density and pressure perturbations (also with m = 1) that have singularities of
type (r — 1)~ near the GAM surface (see Fig.1). In this respect, the GAM eigenmodes have
similar properties as all other eigenmodes in the continuous MHD spectrum of axisymmetric,
toroidal plasmas [2]. It is possible [4] that this globality of the m = 0 and m = 1 components
of a single continuum GAM may have something to do with the “GAM eigenmodes” detected
in several tokamaks. Another result we obtain from the same calculation is the shift of the
GAM frequency due to a finite aspect ratio (including the effect of the Shafranov shift deriva-
tive A"), and due to a non-circular plasma cross section. We find, in particular, a triangularity
effect that predicts a nearly linearly increasing GAM frequency with increasing triangularity,
a phenomenon observed also in TCV. A comparison is shown in Fig. 2, and a remarkably
similar dependence is seen in the analytic triangularity prediction and the experimental data.
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