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Introduction

Advanced plasma confinement in magnetic mirrors features high relative pressure (f = 60%),
mean energy of the hot ions of 12 keV and electron temperature of up to 0.9 keV in stable
regime today [1-3]. In modern concepts mirror ratio of ~15-20 and improved longitudinal
confinement are proposed [4]. Higher fusion gain in linear plasma devices is possible with
improved longitudinal confinement [5]. Existing method of multiple-mirror suppression of the
axial heat flux combined with gas-dynamic central cell [6, 7] can provide effective mirror
ratios of the order of 100, which gives feasible fusion gain appropriate for hybrid systems.
New idea of the helical mirror confinement was suggested in [8]. That proposal renewed the
idea of a plasma flow control with moving magnetic mirrors. Periodical variations of
helicoidal magnetic field moving upstream in plasma’s frame of reference transfer momentum
to trapped particles and lead to plasma pumping towards the central trap. Plasma rotation in
ExB fields similar to vortex confinement [9] can be utilized to create periodical variations of
helicoidal magnetic field moving upstream in plasma’s frame of reference. Variations transfer
momentum to trapped particles [10] and lead to plasma pumping towards the central trap. The
helical mirror traps should have two improvements over the classical multiple-mirrors: the
exponential (instead of the quadratic) law of the confinement improvement with the system

length and the radial pinch of ions
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the first experimental campaign [14]. Here we report the preliminary experimental scalings of

the flow suppression in a helical mirror on the magnetic field and corrugation ratio.

Experimental setup and parameters

In these experiments, the scalings of the suppression efficiency on the magnetic configuration
at low values of the magnetic field (B, = 25-70 mT, project limit 300 mT) and corrugation
depth (R = 1-1.4, project limit R ~ 2-2.5) were studied. Magnetic configuration correspond to
the weak trap in the entrance tank with the mirror ratios to the transport section R =3 and to
the plasma gun R = 6. Hydrogen plasma with the density ~1-5x10'® m= (project range 108
3x10% m) and temperatures Ti ~ 2 eV, Te ~ 7 eV was generated by the plasma gun, based on
the design of [15]. Plasma parameters were stable during any series of the experiments,
providing the same flow. Average values
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on the flattop of the discharge were used to = o r\

build up the radial profiles of the plasma = | e

parameters.
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rotational velocity made it possible to
measure the dependences on the magnetic
configuration without the influence of the
changing of the corrugation velocity v;;
although, the definite reason of the slower

rotation requires further investigations.

Fig. 2. Typical waveforms in a shot with the repetitive
switching between straight solenoidal (R=1) and
helical (R=1.3) magnetic field.

From top to bottom: a) voltage between the cathode
and the anode, b) amplitude of the helical component
of the magnetic field, c¢) discharge current, d) the ion
saturation current on the axis at z = 0.4 m, e) the same

atz=434 m.



46" EPS Conference on Plasma Physics P4.1062

Results and discussion , 2=400m
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section is in the helical configuration (Fig. 3, 4).

The significance of this effect depends mainly on 3

the mirror ratio between the trap region and the T osl
plasma gun.
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Plasma density at the exit from the transport 0 S R 10

section is sufficiently suppressed in the case of the  Fig. 3. Density profiles before (above) and
helical field. Width of the profile, and, therefore, ~ 2fter (below) the transport section at different
the amount of the particles transported through the cormugation. Rotation velacity e ~ 310%™,
mirror, strictly depend on the guide magnetic field and rotation velocity. Presumably, in the
regime of the slow rotation velocity radial pinching is insufficient to counteract diffusion. At
lower magnetic fields radial diffusion prevails, causing stronger plasma column broadening
and less effectiveness. Increase of the magnetic field leads to the significant improvement of

the suppression effectiveness. At higher rotation velocity, pinching become significant, and
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Fig. 4. Density profiles before (above) and after (below) the transport section at different magnetic field.
Rotation velocity @ ~ 3x10° s7!. Straight to helical component ratio is equal at different fields, configuration

is not changed during the discharge. Circles: straight field, crosses: helical field
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plasma radially contracts. Dependence does not

X R =125 4,~10%s"
contradict to the estimations based on eq. (21) 514 | os oo *
. @ 1.3 o
from [11] for given B and Te. (;.;1_2 o
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magnetic field and high rotation velocity.

Experimental dependence lies between linear

Suppression

and quadratic, it does not conflict with the 1
theory.

mean

Line averaged plasma density at the exit of the ~ Fig 3. Suppression dependences on the guide

. . magnetic field (above) and corrugation ratio
transport section, measured by the microwave £ ¢ ) g

) ) ) averaged over the plasma cross-section (below).
interferometer, and particle flux to the exit

expander, estimated by the ionizing pressure gauges, matches the profiles obtained by the
probes. The described measurements show an increase of the suppression efficiency with the
increase of the magnetic field, corrugation ratio and the rotation velocity. Further experiments

on the SMOLA device will be directed to the raising of these parameters.
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