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The propagation and absorption of electromagnetic waves in a homogeneous and stationary

plasma are usually characterized by the angular wave frequency ω and the wave number vector

k⃗. In a weakly inhomogeneous plasma where the inhomogeneity scale length L satisfies kL ≪ 1,

the approach of geometrical optics, ray and beam tracing method, is widely used for wave

analysis. When the wave length is comparable to or longer than L or the wave is evanescent,

however, full wave analysis solving boundary-Value problm of Maxwell’s equation is required.

In the full wave analysis, the response of plasma is represented by a dielectric tensor ↔ε . In

a cold plasma, ↔ε is local and independent of the wave structure. In a hot plasma, however,

particle’s thermal motion leads to the dependence on the wave structure, usually represented by

the wave number k⃗ formally defined in a uniform plasma. Since the wave structure is not known

a priori, there are several approaches to include the hot plasma effects in ↔ε :

1. Cold-plasma wave number approximation: wave number is estimated by the cold plasma

approximation; only applicable for single propagating waves, not for a standing wave.

2. Differential operator approach: wave number k⃗ in ↔ε for uniform plasma is replaced by a

spatial differential operator − i ∇⃗; limited to a long wave length and practically up to the

second order of ∇⃗.

3. Fourier transform approach: wave electric field and inhomogeneous dielectric medium

are Fourier decomposed in space; large computational resource is required to include all

Fourier modes.

4. Integral operator approach: Plasma response is represented by an integral
∫

ε(x− x′) ·

E(x′)dx′ and free from k⃗; interaction is localized in space and less computational resource

required.

In this paper, we discuss a systematic approach to kinetic full wave analysis based on integral

form of dielectric tensor. We assume stationary wave electric field in the form of E⃗ (⃗r, t) =

E⃗ (⃗r)e− iωt where ω is a complex in general and constant in time. Maxwell’s equation in an

inhomogeneous and dispersive medium is written as

∇×∇× E⃗ (⃗r)− ω2

c2

∫
d⃗r′↔ε (⃗r,⃗r′;ω) · E⃗ (⃗r′) = iωµ0J⃗ext(⃗r) (1)
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First we consider a simple one-dimensional case and derive an dielectric tensor in a uni-

form plasma. Free motion of a particle with velocity vx, x = x′+ vx(t − t ′), leads to a variable

transformation from a velocity variable to a position variable

vx =
x− x′

t − t ′
. (2)

Substituting this variable transformation into the perturbed distribution function

f̃ (x, v⃗) =
n

(2πT/m)3/2
q
T

∫ ∞

0
dτ v⃗ · E⃗(x′) exp

[
−

m(v2
x + v2

y + v2
z )

2T
+ iωτ

]
(3)

with τ = t − t ′, we obtain an expression for perturbed current induced in a plasma

J⃗(x) = q
∫

d⃗v v⃗ f̃ (x, v⃗) =
∫

dx′↔σ (x− x′) · E⃗(x′) (4)

and the xx component of conductivity tensor is given by

σxx(x− x′) =
nq2

mω

∫ ∞

−∞
dx̂′ ξ 2U−2(ξ ), · · · (5)

where vT =
√

T/m, x̂ = ωx/vT, τ̂ = ωτ , ξ = ω(x− x′)/vT. The function Un is defined by

Un(ξ ) =
1√
2π

∫ ∞

0
dτ̂ τ̂n−1 exp

[
−1

2
ξ 2

τ̂2 + i τ̂
]

(6)

and localized within an excursion length of particles, vT/ω . It should be noted that this kernel

function is related to the inverse Fourier transform of the plasma dispersion function.

In a magnetized plasma, cyclotron motion perpendicular to the magnetic field is expressed as

x = x0 −
v⊥
ωc

sinθg, x′ = x0 −
v⊥
ωc

sin(θg +ωcτ) (7)

and the variable transformation from the velocity variables (v⊥,θg) to the past particle position

x′ and the guiding center position x0 is required. Introducing a kernel function

F(i)
n (X ,Y ) =

1
2π2

∫ π

0
dθ

[
− X2

1+ cosθ
− Y 2

1− cosθ

]
f (i)n (θ) (8)

where f (1)n = cosnθ/sinθ , f (2)n = sinnθ , f (3)n = sinnθ/sin2 θ , f (4)n = cosθ sinnθ/sin2 θ , we

obtain a dielectric tensor for cyclotron motion localized within the Larmor radius vT/ωc.

As an application of the integral form of dielectric tensor, we consider the O-X-B mode

conversion of electron cyclotron (EC) wave in a tokamak plasma. EC waves launched from

a low density region are often reflected at the cutoff density of the O-mode or the X-mode

unless the wave frequency is high enough. In some experiments, however, electron heating in

over-dense plasma has been observed. One explanation of this phenomena is the O-X-B mode
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conversion[1]. If the parallel wave number is the optimum, the electron densities at the O-mode

cutoff and the X-mode cutoff become same, and the mode conversion from the O-mode to

the fast X-mode occurs. The fast X-mode is reflected at higher density and mode-converted to

the slow-X mode. Finally the slow-X mode is reflected near the lower-density upper-hybrid-

resonance and mode-converted to the electron Bernstein wave (EBW). The EBW penetrates

into the high density region and absorbed at the cyclotron fundamental or harmonic resonance.

Since there exists an evanescent layer between the O-mode cutoff and the fast X-mode cutoff

when the parallel wave number is not optimum, ray tracing analysis has difficulty.

We have developed a one-dimensional kinetic full wave code TASK/W1 [2] and applied it

to the analysis of O-X-B mode conversion in a small-size spherical tokamak. In the previous

analyses, the wave is excited by antenna located in the low field side, and the O-mode excitation

has a possibility of direct excitation of EBW. In the present analysis, we have implemented

waveguide excitation on th wall, and pure O-mode excitation is confirmed. In addition, we have

extended the analysis to the two-dimensional and obtained preliminary results.

We employed the plasma and wave parameters of the spherical torus LATE: R0 = 0.22m,

a = 0.16m, B0 = 0.08T ne(0) = 1×1017 m−3, f = 2.45GHz. Figure 1 shows the dispersion re-

lation, perpendicular wave number versus major radius, and Fig. 2 illustrates the wave structure

in the major radius direction for three values of parallel wave numbers. Waves are excited by

the O-mode waveguide with parallel wave electric field (Ez). By Fourier composing in the uni-

form magnetic direction (z), we obtain preliminary results of two-dimensional wave structure

as illustrated in Fig.3 for cold plasma and Fig.4 for hot plasma.
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Figure 1: Dispersion relation (perpendicular wave number versus major radius) for k∥ = 24m−1

(no X cutoff), k∥ = 32m−1 (Optimum), k∥ = 40m−1 (O cutoff)
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Figure 2: 1D wave structure for hot plasma: k∥ = 24m−1 (no X cutoff), k∥ = 32m−1 (Optimum),

k∥ = 40m−1 (O cutoff)
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Figure 3: 2D wave structure for cold plasma

ReEx(x,z) ReEy(x,z) ReEz(x,z)

-0.2 0.0 0.2
0.0

0.5

1.0

1.5

2.0

2.5
Re(Ex)

MIN  = -6.0000E+00
MAX  =  5.9014E+00
STEP =  9.1549E-01

-0.2 0.0 0.2
0.0

0.5

1.0

1.5

2.0

2.5
Re(Ey)

MIN  = -1.2500E+00
MAX  =  1.0721E+00
STEP =  2.1110E-01

-0.2 0.0 0.2
0.0

0.5

1.0

1.5

2.0

2.5
Re(Ez)

MIN  = -2.0000E+00
MAX  =  1.7170E+00
STEP =  4.1300E-01

Figure 4: 2D wave structure for hot plasma
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