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Spherical tokamaks are the most 

perspective devices for the commercially 

viable modular fusion power plant [1].The 

poloidal system of the spherical Globus-M 

tokamak (Ioffe Inst., S-Petersburg, RF) is 

shown in Fig. 1. Its plasma magnetic 

control system is presented in Fig. 2. In 

this scheme robust PID-controllers were 

tuned by the Quantitative Feedback 

Theory (QFT) [2]. The idea of this method 

is in Nichols chart analysis of an open 

loop system (Fig. 3). As result, 

PID-controllers and pre-filer (PF) 

were tuned with transfer functions 

as follows:  
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Step responses of the control systems of R and Z with these controllers and full nonlinear self-

oscillations models of thyristor Current Inverters (CI) [3] as actuators are shown in Fig. 3b. 

After PID-controllers were tuned, the estimation of the vertical controllability region [4] was 

done considering the restriction of the voltage on the vertical plasma position control coil: 

max
| | 900u u V  . The scheme with the tuned horizontal position (R) PID-controller and 

without the vertical position (Z) control loop was used for the estimation. The analytical 

estimation of the controllability region was done with the help of the state-space model:  
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Fig. 2. Diagram of the Globus-M tokamak plasma control system. 
 

a)                                        b) 

Fig. 1. a) Poloidal system, b) equal level lines of poloidal 

magnetic flux in vertical cross-section of Globus-M and 

points G1-G6 for the gaps control. 

46th EPS Conference on Plasma Physics P4.1095



  
a) b) 

Fig. 3. a) Nichols charts of the open-loop systems tuned by the QFT approach. The left chart is for the vertical 

plasma position Z control system, the right chart is for the horizontal plasma position R control system. Phase 

margins are equal to 75.5⁰; 83.9⁰, amplitude margins are 9.09 dB; 23.1 dB. b) Step responses of the vertical and 

horizontal plasma positions with PID-controllers tuned by the QFT approach and with full nonlinear CI models. 

 
a)     b)     c) 

Fig. 4. a) Dynamics of the unstable subsystem with different initial displacements; b) dynamics of the stable 

subsystem with different initial displacements; c) dynamics of the whole system in the numerical 

simulations with different initial displacements. 

For the analytical analysis of the system the transfer to a new basis was done to separate 

stable and unstable parts of the system and get the restriction on the state in the new basis: 

22 max 22 max 22
ˆˆ| | | || | /x b u  4

1.9383 10  . Estimations 5

22 0
ˆ (0) 1.3146 10x Z  , 0

| | 0.1477Z m  

were obtained by using the relation between ‘new’ and ‘old’ bases. The maximum initial 

vertical displacement that might be parried by maximum voltage value on the control coil was 

obtained by numerical simulations (Fig. 4) [4]. Numerical and analytical results are equal. 

Then the plasma shape reachability area in a steady-state regime was estimated considering 

current restrictions of control coils. For this, the matrix relation between inputs and outputs 

was received: y Mu . Inputs u are the setpoints of Z and R displacements and setpoints of 

currents of control coils. Outputs y are the projections of plasma shape points to selected 

directions (Fig. 1b).  Plasma dynamics is described by the equations: ,x Ax Bu y Cx   . In 

the steady-state regime 0x   hence 1 1
,x A Bu y CA Bu

 
    , and 1

M CA Bu


  . Two 

estimations were calculated using this relation: upper and lower ones. There are no shapes 

beyond the upper estimation because of the given limits and there are any shapes inside the 
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lower estimation. For calculation of the upper estimation the inputs with maximum values and 

needed signs were used (Fig. 5a). For calculation of the lower estimation a previously 

auxiliary estimation was obtained (Fig. 5 b). The auxiliary estimation is the maximum maxi
y of 

each plasma shape point projection i
y with all other projections equal zero. As a result
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  . The value maxi

y  was obtained using binary search. 

One sixth of the auxiliary estimation is the lower estimation because the plasma model 

is linear (Fig. 5 c). Let us the output vector 
1 6

[ ... ]
T

Y y y  where max
| | / 6, 1,..., 6

i i
y y i  . Then
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Y M u u . So Y  can be gotten using allowable inputs. 

 
a)                                       b)       c)                                                        

Fig. 5. a) Upper, b) auxiliary and c) lower estimations of the plasma separatrix reachability area at 8 inputs and 6 

outputs. 

In addition, the controllability 

region was obtained on state-

space projections to the (I, Z)-

plane. This estimation was done by two approaches: analytical with the use of the 2-order 

simplified model of the plasma in the tokamak and numerical one. Simplistically the tokamak 

is the series connection of the coil and the plasma, which may be described by stable and 

unstable first-order transfer functions respectively (Fig. 6). Using identification approach [5] 

to the closed-loop control system by means of MatLab, parameters of the system units (Fig. 6, 

Fig. 6. Block-diagram of the 2-order closed-loop system. 
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7a) were obtained: 
1
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The simplified 2-order differential equation of the control system was integrated: 
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From where the asymptotes of the dynamics of ( )Z I  were derived on the phase plane: 

( ) ( ) / ( )
p c

c c c p

c p
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Z I p I K U p p

p p
      and /

c c
I K U p , where max

U U  . These 

asymptotes are the bounds of the controllability region. The 2-order system is not able to 

describe the dynamics of the full 24-order system at relatively large deviations precisely. 

Numerical simulations of the open-loop full-order system with the maximum control voltage 

have showed that controllability region is less than the region predicted by the 2-order system: 

4
( ) -1.780 10   0.146Z I I


     (Fig.7b) [6]. The numerical estimation is more precise at large 

deviations because it takes into account all the model states. 

 
a)        b) 

Fig. 7. a) Processes in the closed-loop control system with full and second-order plant models; b) state-space 

projections and controllability regions for the full and second-order system. 
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