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Spherical tokamaks are the most
perspective devices for the commercially
viable modular fusion power plant [1].The
poloidal system of the spherical Globus-M
tokamak (loffe Inst., S-Petersburg, RF) is
shown in Fig. 1. Its plasma magnetic
control system is presented in Fig. 2. In
this scheme robust PID-controllers were
tuned by the Quantitative Feedback
Theory (QFT) [2]. The idea of this method

is in Nichols chart analysis of an open
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Fig. 1. a) Poloidal system, b) equal level lines of poloidal
magnetic flux in vertical cross-section of Globus-M and
points G1-G6 for the gaps control.

loop system (Fig. 3). As result,
PID-controllers and pre-filer (PF)

were tuned with transfer functions
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Fig. 2. Diagram of the Globus-M tokamak plasma control system.

Step responses of the control systems of R and Z with these controllers and full nonlinear self-

oscillations models of thyristor Current Inverters (CI) [3] as actuators are shown in Fig. 3b.

After PID-controllers were tuned, the estimation of the vertical controllability region [4] was

done considering the restriction of the voltage on the vertical plasma position control coil:

|ul<u,, =900V . The scheme with the tuned horizontal position (R) PID-controller and

without the vertical position (Z) control loop was used for the estimation. The analytical

estimation of the controllability region was done with the help of the state-space model:

X = Ax+ Bu, Z =Cx,

40 1 1.
xeR®, ueR,ZeR’; |ulku,,,.
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Fig. 3. a) Nichols charts of the open-loop systems tuned by the QFT approach. The left chart is for the vertical
plasma position Z control system, the right chart is for the horizontal plasma position R control system. Phase
margins are equal to 75.5%; 83.9°, amplitude margins are 9.09 dB; 23.1 dB. b) Step responses of the vertical and
horizontal plasma positions with PID-controllers tuned by the QFT approach and with full nonlinear CI models.
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Fig. 4. a) Dynamics of the unstable subsystem with different initial displacements; b) dynamics of the stable
subsystem with different initial displacements; ¢) dynamics of the whole system in the numerical
simulations with different initial displacements.

For the analytical analysis of the system the transfer to a new basis was done to separate
stable and unstable parts of the system and get the restriction on the state in the new basis:

| %oy | <I b,y U], /A, =1.9383x10*. Estimations X,,(0) =1.3146x10°Z,, |Z,|<0.1477m

were obtained by using the relation between ‘new’ and ‘old’ bases. The maximum initial
vertical displacement that might be parried by maximum voltage value on the control coil was
obtained by numerical simulations (Fig. 4) [4]. Numerical and analytical results are equal.

Then the plasma shape reachability area in a steady-state regime was estimated considering
current restrictions of control coils. For this, the matrix relation between inputs and outputs

was received: y = Mu. Inputs u are the setpoints of Z and R displacements and setpoints of
currents of control coils. Outputs y are the projections of plasma shape points to selected
directions (Fig. 1b). Plasma dynamics is described by the equations: x = Ax+ Bu, y=Cx . In
the steady-state regime x=0 hence x=-A"Bu, y=-CA'Bu, and M =—-CA™'Bu. Two

estimations were calculated using this relation: upper and lower ones. There are no shapes
beyond the upper estimation because of the given limits and there are any shapes inside the
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lower estimation. For calculation of the upper estimation the inputs with maximum values and
needed signs were used (Fig. 5a). For calculation of the lower estimation a previously

auxiliary estimation was obtained (Fig. 5 b). The auxiliary estimation is the maximumy,, . of
each plasma shape point projection y,with all other projections equal zero. As a result
Yoax = [Yimac--Yoma ] WHere y; .. is the maximum in the vector [0...y,,,...0]" = Mu'” with

u? =[P o7 U <, The index j for u”corresponds toy, .., j=1,..,6. For

imax *

calculation of vy, . the matrix M was decomposed into two matrices M, e R***and
M, eR™:M=[M, M,], then [0..y, .01 =[M, MJ[u”.u®], [u@®.ul] =
=M, ([0...Y ;x0T =M, [u{? ufPT") . The value y,,,, was obtained using binary search.

One sixth of the auxiliary estimation is the lower estimation because the plasma model
is linear (Fig. 5 c). Let us the output vector Y =[y,...y,]" where|y, |< V.. /6,i=1..,6.Then
Y =[y,0..0]" +...+[0...0 y;]" <([ Yy 0---0]" +...+[0...0Y,. . 1")/ 6=

=M (U uPT + o+ U uPTT) 16 <M ([Uy, e Ugra I e Uy e U ]T) /6 =

=M [Uy e Ugme ]+ thusY < MU, -Ugo I - SO Y can be gotten using allowable inputs.
40cm 12cm 2cm
0 HH H
-P1P2 mm P5 m
40(:%1 12c;1 -2cm
a) b) c)
Fig. 5. a) Upper, b) auxiliary and c) lower estimations of the plasma separatrlx reachablllty area at 8 inputs and 6
outputs. i K K 5
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region was obtained on state- L .
space projections to the (I, 2)- Fig. 6. Block-diagram of the 2-order closed-loop system.
plane. This estimation was done by two approaches: analytical with the use of the 2-order
simplified model of the plasma in the tokamak and numerical one. Simplistically the tokamak
is the series connection of the coil and the plasma, which may be described by stable and
unstable first-order transfer functions respectively (Fig. 6). Using identification approach [5]

to the closed-loop control system by means of MatLab, parameters of the system units (Fig. 6,
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7a) were obtained: K, =2668.3A/V, p, =297.7274s™; K =0.1536 m/A, p, =761.7s".
The simplified 2-order differential equation of the control system was integrated:
e ppt
(KU —p.ly)e ™ —(p, + p,)KU + (KK U +K_ p,l,+Z,p.p,+Z,p;)e

Z(t,15,2,) =K, op) ,
c c p

I(t,1,) = (KU-e™)KU-p]l,))/p,, the relation between z and 1, 1,, Z, was obtained:

ﬁ KCU n pcl _KCU )+ (Kp(KcU + pp|0)+zopp(pc+ pp))(pCIO_KcU) )
p. P,  P.tD, P, (P + P, )(P 1 — KU))EH

From where the asymptotes of the dynamics of Z(1) were derived on the phase plane:

Z(1,1,,Z,)=—

K
—£ (& + These

c p

Z(1)=- pl-KU)/(p,+p,) and 1=KU/p, where U=zU

max *

asymptotes are the bounds of the controllability region. The 2-order system is not able to
describe the dynamics of the full 24-order system at relatively large deviations precisely.
Numerical simulations of the open-loop full-order system with the maximum control voltage
have showed that controllability region is less than the region predicted by the 2-order system:
Z(1)=-1.780x10"*1 + 0.146 (Fig.7b) [6]. The numerical estimation is more precise at large

deviations because it takes into account all the model states.

0.5

R 2-nd order
0.4 = = =full model
feedback-control

0.3

0.2

Voltage, V

0

300
200
100
0
-100

0

(1]
(2]
(3]
[4]
(5]
(6]

0.005

0.01

0.015

0.02
Time, s

HFC Current, A

0.025

0.03

0.035

0.04

0.01 0.02 0.03 004

Time, s

a)
Fig. 7. a) Processes in the closed-loop control system with full and second-order plant models; b) state-space
projections and controllability regions for the full and second-order system.
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