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Not all key questions in fundamental physics can be readily investigated using conventional

high-energy particle collider technology, and modern developments in laser-plasma-based ac-

celerator science offer a new perspective in the quest for physics beyond the Standard Model.

In particular, alternative methods are required to search for novel low-mass particles with very

weak coupling to ordinary matter. The QCD axion is probably the most celebrated example

of such a particle; although it was introduced to explain the lack of CP violation in the strong

interaction [1, 2, 3], interest in it as a cold dark matter candidate developed soon after it was

proposed [4, 5, 6].

The QCD axion arises as a pseudo-Nambu-Goldstone boson of a broken global symmetry (the

Peccei-Quinn symmetry); thus, the QCD axion is a natural feature of Grand Unified Theories.

In particular, the predictions of string theory are replete with such particles [7]. The wider group

are known as axion-like particles (ALPs), and they resemble the QCD axion in that they interact

with ordinary matter and fields in a similar way to the QCD axion. However, their masses and

coupling strengths differ from the QCD axion.

Over the last few decades, numerous experimental campaigns have been waged in an effort to

detect the QCD axion and its ALP brethren. Although the most established approaches rely on

astrophysical sources, a number of searches for ALPs have been developed in recent years that

are based entirely in the laboratory (see Ref. [8] for a recent review). In particular, the canonical

light-shining-through-wall (LSW) searches for ALPs [9] are based on ALP production from the

interaction of a laser with a magnetic field on one side of a barrier opaque to photons. The ALPs

propagate through the barrier, and convert back to photons in a magnetic field on the other side

of the barrier.

To date, there is no definitive experimental evidence for the QCD axion or ALPs. However,

the theoretical arguments for their existence are compelling, and it is worth exploring every

available avenue in an effort to uncover them. Although much of the ALP parameter space has

been constrained (see, e.g. Ref. [10]), there is room for new investigation. Our proposal [11]

is to replace the section of a canonical LSW experiment in which the ALPs are generated by

a laser-wakefield accelerator immersed in a static magnetic field (see Fig. 1). Our approach
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Figure 1: A novel LSW experiment in which a laser-driven non-linear plasma wave (indicated

by a sawtooth) interacts with a static longitudinal magnetic field to produce ALPs (dashed line),

energetic electrons (blue line) and intense photons (thick red line). Photons, electrons and ALPs

emanate from the laser-driven plasma. The photons and electrons are absorbed downstream,

whilst the ALPs penetrate the barrier/absorber and are converted to terahertz photons (thin red

line) using a static transverse dipole field [11].

exploits the strong longitudinal electric field (∼ 100GVm−1) present in the wake behind a high

intensity (∼ 1019 Wcm−2), short ( ∼ 2 µm), laser pulse propagating through an underdense

plasma. The plasma section of the laser-wakefield accelerator would be sited inside the bore,

along the axis, of a solenoid generating a strong (e.g. ∼ 35T [12]) longitudinal magnetic field.

The electromagnetic field configuration responsible for generating ALPs in our approach is

very different to that used in the regular LSW experiments. In the standard LSW configura-

tion, the majority of the ALP production arises through the product of the dynamical transverse

component of the electric field of a laser and a static transverse magnetic field. However, in

our approach the ALPs are essentially driven by the product of the quasi-static longitudinal

component of the electric field of the plasma wake and a static longitudinal magnetic field. The

corresponding length scales are very different in the two cases. In the regular LSW experiments,

the laser wavelength plays a key role; however, in our approach the plasma wavelength is a fun-

damental ingredient. The plasma wavelength is approximately two orders of magnitude greater

than the laser wavelength. Furthermore, the plasma wake is quasi-static; hence, a quasi-static

pulse of ALPs is generated within the plasma. The parametric behaviour of the ALP flux is

quite different to that produced by a laser beam propagating through a static magnetic field in

the vacuum.

The results in Ref. [11] are based on analytical estimates of the ALP flux that emerge from a

relativistic 1-dimensional electrostatic wave propagating through a constant longitudinal mag-
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Figure 2: Estimates of the ALP flux density NΨ versus the Lorentz factor γ ≈ω0/(
√

3ωp) of the

wake in a 3-dimensional laser-wakefield accelerator, for the parameters ωp = 2π×1013 rads−1,

Bs = 35T. The ALP mass is 10−5 eV/c2 in the left-hand graph and 10−4 eV/c2 in the right-hand

graph. The ALP-photon coupling strength is 0.66×10−10 GeV−1 in both graphs.

netic field. Scaling arguments suggest that the ALP flux density produced in the 3-dimensional

bubble, or blow-out, regime underpinning the laser-wakefield accelerator paradigm is∼ 25% of

the ALP flux density in the 1-dimensional case [11].

Inspection of Fig. 2 shows that the ALP flux density is strongly dependent on the ratio ω0/ωp

of the laser and plasma frequencies, and the details of its dependence are highly sensitive to the

ALP mass. The parameters used in Fig. 2 have been chosen with respect to the regimes of

interest to CAST [13] and ADMX [14]. The CAST collaboration have excluded ALP-photon

coupling strengths that are greater than ∼ 0.66× 10−10 GeV−1 if the ALP mass is less than

∼ 0.02eV/c2, and the ADMX experiment is focussed on detecting ALPs of mass∼ 10−5 eV/c2.

If the ALP mass is less than∼ 1.8×10−4 eV/c2 then our results suggest that it may be possible

to use a laser-wakefield accelerator to generate pulses of ALPs of tens of femtoseconds in

duration, each of which has an individual flux comparable to the essentially continuous flux

of solar ALPs at the Earth. One pulse of ALPs would be produced for each laser shot, and the

plasma would need to be replenished between shots. However, it ought to be possible to produce

a few pulses per second using the forthcoming ELI facilities [15]. Moreover, unlike the ALP

flux from astrophysical sources, one can manipulate the ALP flux in our approach by adjusting

the current through the solenoid and the laser-plasma parameters.

The reconversion of ALPs back to photons on the far side of the barrier could be facilitated

using a similar dipole magnet (∼ 9T) to that used by CAST. However, whilst x-ray photons pre-

dominate in the CAST experiments, the ALPs in our modified LSW configuration are expected

46th EPS Conference on Plasma Physics P4.2024



to convert to terahertz photons. Single-photon detectors that operate in the terahertz region are

important for applications in solid-state physics and astronomy [16] and, as such, considerable

effort has been devoted to their development. Although the realisation of a modified LSW ex-

periment of the type envisaged in Ref. [11] would be a considerable technical challenge, the

results gained thus far suggest that further theoretical investigation is warranted.
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