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Magnetic field expansion is successfully used for suppression of longitudinal electron heat

flux in most of presently operating big linear machines for fusion-aimed investigations [1–3]

and numerous applications based on compact mirror traps [4–6]. Besides reducing the density

of energy flow such inhomogeneity of the magnetic field results in the variation of electrostatic

potential along the field line that reflects most of passing electrons back to the trap body, thereby

reducing collisional heat flux to the end walls, and accelerates ions [7]. The expansion also

prevents secondary electrons generated at the end wall from reaching and cooling the plasma.

The basic physics of the potential formation in the expander region is well known and sum-

marized by Ryutov in his seminal paper [8]. However, there are still some discrepancies between

the theory and experiments. Particularly, the potential drop in the Debye sheath near the plasma

collector is up to order of magnitude higher than measured at the GDT facility in Budker Insti-

tute [9]. The discrepancy is traditionally explained by plasma interaction with a residual neutral

gas. However, this is not consistent with the recent experiments that demonstrate a weak depen-

dence of plasma parameters on the background gas density [10,11]. In this paper, we propose an

explanation of such discrepancy assuming the negligible influence of neutrals but considering

ion acceleration by varying ambipolar electric field. Being taken into account consistently with

the plasma potential formation, it allows to develop a relatively simple model that predicts the

potential drop compatible with the experiment.

We consider a stationary flow of singly ionized plasma expanding in a divergent magnetic

field. The cross-section S of the flow varies following the conservation of the magnetic flux,∫
BdS = const. The cross-section S monotonously increases from Smin at the magnetic plug to

Smax at the conductive wall collecting the plasma. Near the plug, we assume that the veloc-

ity distribution of the electrons is close to the Maxwellian distribution. Near the conductive

wall, the plasma is so rarefied that collisions are weak and the expansion results in a strongly

anisotropic distribution function of electrons. Somewhere between these two regions, there is

an area that provides a smooth transition from isotropic to strongly anisotropic electron velocity

distributions. We consider this transition area to be of zero width, thus it may be replaced with

the boundary cross-section Sb at which the plasma flow and potential are continuous. The ions
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are described with the quasi-one-dimensional stationary fluid equations:

d
dS

(Snui) = 0, (1)
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i
)
+S

d
dS

(nTi) =−Sne
dϕ

dS
, (2)

where ui, Ti and mi are, correspondingly, the directed velocity, temperature and mass of ions, e

is the elementary charge, ϕ is the plasma (ambipolar) potential, n is the plasma density. Here we

embed the quasi-neutrality condition: ion and electron densities are equal, n = ni = ne, every-

where except the Debye sheath near the conductive wall at Smax. Thus, the electron dynamics

enters these equations through a particular n(S,ϕ) defined from the following expression

n(S,ϕ) =
∫

fe d3v, (3)

where fe(S,v) is a given electron distribution function in a velocity space at cross-section S.

In the collisional expansion region, Smin ≤ S ≤ Sb, the electron distribution function is as-

sumed to be Maxwellian with temperature Te equal to the electron temperature inside the trap

and maintained constant in the region due to high electron thermal conductivity. It results

in the Boltzmann’s law, eϕ = Te ln
(
n/np

)
, where np is the plasma density at the plug. The

second condition needed to solve (1)–(2) is followed from known analogy with Laval’s noz-

zle [12]: plasma velocity is equal to isothermal ion acoustic velocity at minimal cross-section,

ui(Smin) = cs ≡
√

(Te +Ti)/mi. Then solutions of equations (1)–(2) determine a self-consistent

variation of the ion velocity, plasma density and potential in collisional expansion region, thus

providing their values at the boundary cross-section Sb.

In the kinetic expansion region, Sb≤ S≤ Smax, a solution of collisionless Boltzmann equation

is found as an arbitrary function of two integrals of motion, with

fe = F(E ,µ), E =
meυ2

z

2
+

meυ2
⊥

2
− eϕ, µ = υ

2
⊥S. (4)

Here E is the electron energy, υz and υ⊥ are the longitudinal and transverse electron velocities

with respect to the magnetic field lines (paraxial approximation used), µ is the magnetic mo-

ment related to the electron gyromotion. We assume µ to be an adiabatic invariant, because the

divergence of S(z) is slow compared to the electron Larmor radius.

To reconstruct fe, let us consider S = Sb and assume that the electron distribution function

here is still Maxwellian. Obviously, we can say so for the electrons with υz > 0. Its distribu-

tion would be a half-Maxwellian corresponding to υz > 0 with the same temperature as in the

collisional region. Now let us introduce the potential ϕw of the plasma absorbing wall placed

at Smax. Electrons with low enough kinetic energy can not penetrate through the potential well
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e(ϕb−ϕw) and do not reach the wall. Thus, fe at Sb is expressed as fe = Aexp(−E /Te) which

is defined in the velocity region

Vb =

 υ⊥ <
[

2e(ϕb−ϕw)/me−υ2
z

1−Sb/Smax

]1/2
if υz < 0

any υ⊥ if υz > 0
(5)

and zero outside of this region. After that there are only two unknown parameters, the norm A

and the wall potential ϕw, that may be recovered from the conditions of quasi-neutrality and

zero net current of ions and electrons at the cross-section Sb:∫
Vb

2πυ⊥ fe dυ⊥dυz = nb,
∫
Vb

2πυ⊥υz fe dυ⊥dυz = nbuib. (6)

All these allow to fully determine the electron distribution function for the area of the veloc-

ity space that is causally related to the cross-section Sb. However, for S > Sb there is an area

in velocity space that is not related to the collisional region because corresponding particles

are both reflected by the magnetic mirror and by the plasma potential in their traveling to the

wall. However, the trapped electrons may influence the potential profile. Following Ryutov, we

assume that the velocity-space density of trapped electrons is not much different from that of

the passing electrons [8]. Thus, finally, we consider fe = Aexp(−E /Te) with A from (6) and

defined in an extended region

V (S) =

 υ⊥ < υ1 if υz < 0 υ1 =
[

2e(ϕ−ϕw)/me−υ2
z

1−S/Smax

]1/2

υ⊥ < max(υ1,υ2) if υz > 0 υ2 =
[

2e(ϕ−ϕb)/me−υ2
z

1−S/Sb

]1/2

and zero outside of this region. Then (3) may be expressed in explicit form in terms of the error

function and is used for numerical solution of ion equations (1)–(2).

However, the wall potential ϕw defined by (6) is inconsistent with the numerical solution

ϕ(Smax) of (1)–(2): in all cases ϕw < ϕ(Smax) < 0. This may be interpreted as follows. The

quasi-neutrality condition is not met in the thin Debye sheath near the wall, however, the wall

potential ϕw is determined accurately basing on principles independent of the sheath formation.

The Debye sheath is typically narrow in comparison to the scale of the expansion region, so

ϕ(Smax) characterizes the potential just before the sheath. Therefore, we can introduce the po-

tential drop inside the sheath as ∆ϕw ≈ ϕw−ϕ(Smax), that makes our description consistent.

Note that even slight shift of ϕ(Smax) in comparison to ϕw due to ion acceleration may affect

∆ϕw substantially. This fact is illustrated in figure 1(a), where two potential profiles are plotted:

one is obtained within the described model while another corresponds to the case when equation

(2) is replaced with ui = const. We place the wall at Smax/Smin =100 and consider Sb/Smin→ 1.
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(a) (b)

Figure 1: (a) The potential profile in expander with (solid) and without (dashed) ion acceleration

considered. (b) The dependence of the wall potential drop on the total expansion ratio. Electron

temperatures 0< Ti < Te are indicated with a cloud with the central curve for Ti = 0.6Te. Dashed

curve correspond to Ryutov’s asymptotic. Black dots indicate the experimental results from [9].

Comparison of |∆ϕw| resultant from our modelling to both theoretical estimations by Ryu-

tov [8] and experimental data measured at the GDT [9] are shown in figure 1(b). One may find

out that both |∆ϕw| resultant from modelling and Ryutov’s estimate predict the same tendency to

decrease with the expansion ratio. However, our approach results in much smaller wall potential

drop which is in good agreement with the experimental values.
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