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Analytic derivation and numerical calculation of pressure driven MHD instabilities in toroidal

plasmas is notoriously difficult. Instability is determined by apparently weak effects in the

toroidal metric tensor. There are now new generations of gyro-kinetic codes that are being

deployed to model MHD instabilities. Some of these codes are, or have been, only partially

electromagnetic. It is usually assumed that the perturbed vector potential is parallel to the equi-

librium field (so that the perturbed parallel magnetic field is nearly zero), although in some codes

an imposed effective adiabatic parallel magnetic field is adopted. Similar such reduced models

are also assumed in some non-linear MHD codes deployed for the study of edge localised

modes. These codes also sometimes approximate the equilibrium toroidal magnetic field, by

neglecting the magnetic well associated with fine pressure. The present contribution, offered

in detail in Ref. [1], investigates the impact of code-relevant models for the parallel magnetic

field and the equilibrium magnetic field on pressure driven instabilities in axisymmetric toroidal

equilibria.

The Perturbed Curvature
From the unperturbed full momentum equation, assuming weak growth rate and isotropic pres-

sure (neglecting kinetic corrections as discussed above), the curvature is

κ(t,x) =
∇P
B2 +

∇⊥B
B

.

Linearising this, we have

δκ =
∇δP
B2 +

∇⊥δB‖
B

−2
δB‖

B
κ− δB⊥(b ·∇)B+b(δB⊥ ·∇)B

B2 .

where only quantities assigned with δ are non-equilibrium. Considering flute modes, we expect

(b ·∇)δ ∼ ε∇⊥δ or slower. Variation of equilibrium quantities also scale linearly with ε . Hence

taking δP =−ξ ψdP/dψ (collisionless ideal MHD),

δκ = ∇⊥

[
δB‖

B
−ξ

ψ 1
B2

dP
dψ

]
(1+O(ε)) . (1)
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Meanwhile under the MHD model we have exactly

δB‖ =−B(∇ ·ξ⊥+2κ ·ξ⊥)+B−1
ξ⊥ ·∇P. (2)

Finally, the convenient form for the potential energy in the plasma, on deploying Eq. (2) can be

written as,

δW⊥=
1
2

∫
P

d3x
[
|δB⊥|2 +B2 ∣∣δB‖−B−1

ξ⊥ ·∇P
∣∣2−2(ξ⊥ ·∇P)(κ ·ξ ∗⊥)− J‖(ξ

∗
⊥× e‖) ·δB⊥

]
.

(3)

Hence the stabilising second term is seen to be associated with fluctuations in total pressure

(magnetic + thermal), or from Eq. (1), the fluctuating magnetic curvature.

Analytic Solutions for long wavelength modes
We now follow [2] assuming a local large aspect ratio expansion. We identify specifically the

effect of inconsistent δB‖ and the equilibrium toroidal field. Let B = F∇φ +∇φ ×∇ψ with

F = F0 +σ2F2(ψ)

where F0 = R0B0 is a constant and

dF2

dr
= B0

[
α

2q2 −
ε

q2 (2− s)
]
, α ≡−2q2R0

B2
0

dP
dr

.

Here σ2 = 1 if the equilibrium field is consistently taken into account, or σ2 = 0 in the case

where the effect is neglected. If we also allow for a model for δB‖, or δBφ we obtain δWRED

(reduced) relative to δWCON (consistent):

δWRED = δWCON +2π
2B2

0R−1
0

∫ a

0
dr r

(
ξ̂

r
0

)2
Q, (4)

Q =

[
R ˆδB

φ

ξ̂ r
0B0

+
V (r)

2

]2

+(σ2−1)
1

B0

dF2

dr

[
R ˆδB

φ

ξ̂ r
0B0

+
V (r)

2
− ε

n
m

(
n
m
− 1

q

)]
, (5)

V (r) =
α

q2 +2ε

[(
n
m
+

2
q

)(
n
m
− 1

q

)
+

s
q2

]
. (6)

We may lift known expressions for δWCON , e.g. the internal kink mode, infernal modes, inter-

change and ballooning. For basic gyrokinetic or fluid codes which neglect δB‖ entirely without

compensation, but keep realistic equilibrium toroidal field σ2 = 1, one obtains an unphysical

absolutely stabilising effect associated with Q = (V/2)2. This effect can be attributed to per-

turbations in the curvature, which for a self-consistent case should be zero.

Solutions for codes that neglect δB‖ and approximate toroidal equilibrium field

In this section we let

δBφ = σ1

(
−

ξ r
0B0V (r)

2R

)
(7)
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such that σ1 = 1 for a self-consistent MHD case, and σ1 = 0 if δB‖ effects are neglected.

Infinite n Ballooning Modes can be treated with the treatment here:

∂

∂θ

[{
1+(sθ −α sinθ)2

}
∂

∂θ
ξ

r
]

+α

[
cosθ − ε

{
1− σ2

q2

}
+ sinθ(sθ −α sinθ)

]
ξ

r− (σ2−σ1)
α2

4q2 ξ
r = 0. (8)

The effect of artificially setting σ1 = 0 and/or σ2 = 0 is weak for traditional ballooning modes

in tokamaks which are typically of concern in the edge where q� 1 and α ∼ 1. However, for

Mercier modes, the approximation is important.

Interchange Modes can be developed robustly in the long wavelength limit, or for short wave-

lengths. One obtains the modified Mercier criterion for instability:

α

[
ε

(
σ2

q2 −1
)
− (σ2−σ1)

4q2 α

]
>

s2

4
. (9)

Hence, one recovers the usual MHD results for the self-consistent parameterisation σ1 =σ2 = 1.

But, for reduced MHD codes that deploy σ1 = σ2 = 0, Mercier modes are unstable for−4εα >

s2. It is seen that the drive for interchange modes in a cylinder has disappeared, and one is

left with only the additional factor that arrives from toroidal curvature. One can therefore only

obtain interchange modes for cases where α is negative (sometimes relevant for plasmas that

have accumulated impurities in the core)

Infernal Modes are described by the Eigenvalue equation [3]:

γ2

ω2
A
=

n2

Λ

{
2−3α2Λm,n

(m+1)2(m+2)
+

2−1

(m+1)(m+3)

[
εα

(
σ2

q2
r
−1
)
− (σ2−σ1)

α2

4q2
r

]
−
(

∆q
qr

)2
}
,

(10)

where Λ = 1+ 2q2 in the ideal MHD limit, and Λm,n is a coefficient related to infernal mode

coupling [4].

Internal Kink Mode stability is also easily established. On setting σ2 = σ1 = 0 we obtain

ˆδW = βp + (1−q0)

[
13
48
−3β

2
p

]
, βp =−

2
B2

pr2

∫ r

0
dr r2 dP

dr
∼ 1, (11)

where the term (1− q0)
[
13/48−β 2

p
]

is the well known self-consistent Bussac [2], but it is

smaller than the artificial term ηp. For the reduced problem, the internal kink will be stable if

the pressure is peaked in the core, or unstable if the pressure is hollow. Codes with σ1 = σ2 = 0

that seek to obtain an internal kink mode may wish to consider a hollow pressure profile.

Improvement for Partially Electromagnetic Gyrokinetic Codes
Some gyrokinetic codes impose an effective δB‖ which recovers the essential finite beta

effects associated with δB‖. These codes impose the approximate form ˙δB‖ = B−3(∇Φ×B) ·
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∇P, where Φ is the perturbed vector potential. This approximate form is equivalent δB‖ =

B−1ξ⊥ ·∇P. This is (to leading order in gyro-radius) achieved via the dual transformations

Ω∇B→Ωκ and δB‖→ 0, where

Ω∇B =−i
(b×∇B) ·∇

B
and Ωκ =−i(b×κ) ·∇.

The effects of δB‖ appear in gyrokinetic codes to leading order in gyroradius in terms involving

K:

K = i ˙δB‖−Ω∇BΦ. (12)

So, the approximation deployed in gyrokinetic codes conveniently yield K =−ΩκΦ. For pres-

sure driven instabilities, the effective δB‖ nearly gives correct result. One does observe an error

for internal kink modes - the hardest of pressure driven instabilities to get correct.

The MHD calculations undertaken yield a more accurate solution to δB‖, identified from

condition δWRED = δWCON , i.e. Q = 0. From Eq. (4), for a physical magnetic field σ2 = 1, this

requires that δBφ =−ξ r
0B0V (r)/(2R) (as also seen from the consistent case σ2 = 1 in Eq. (7)).

The corresponding parallel magnetic field is easily seen to be:

δB‖ =−B0
ξ r

0
R

{
α

2q2 + ε

[(
n
m
+

1
q

)(
n
m
− 1

q

)]}
. (13)

By transforming from MHD variables to gyrokinetic variables, we can now obtain an improve-

ment to the transformation undertaken in gyro-kinetic codes. In particular gyrokinetic codes

will be capable of recovering ideal MHD pressure driven instabilities with the following trans-

formation:

δB‖→ 0, Ω∇B→Ωκ +
2i

qRB
B ·∇ (14)

The correction in this expression contains the magnetic operator B ·∇. The internal kink mode

is a special case, since the B ·∇ operation on an m = 1 perturbation is not necessarily small far

from the rational surface.
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