

Structure generation of the edge radial current during the L-H transition on JT-60U

K. Kamiya¹, K. Itoh², S.-I. Itoh³, and M. Honda¹

¹*National Institutes for Quantum and Radiological Science and Technology (QST), Japan*

²*Institute of Science and Technology Research, Chubu University, Japan*

³*Research Center for Plasma Turbulence, Kyushu University, Japan*

More than 30 years have passed since the theoretical model of the structural bifurcation of the radial electric field E_r for the transition from the Low- to High-confinement modes (so-called, L-H transition) was proposed [1]. According to a theoretical model [2], the non-uniformity of the radial electric field E_r (i.e. its shear and/or curvature effect) at the plasma peripheral region just inside the separatrix, which occurs spontaneously with a fast time-scale (such as a few 10 micro second, typically, or up to 1 ms at the latest), plays an essential role for the turbulence suppression during the formation of Edge Transport Barriers, ETBs, across to the L-H transition.

One of remaining issues in this research area is to identify the origin of E_r in the ETBs. Apart from the H-mode which occurs spontaneously, it was demonstrated that the L-H transition could be externally controlled also by electrode bias [3], exhibiting an essential role of E_r -bifurcation (including Zonal-flow, ZF [4]) for triggering the L-H transition. Probe measurement confirms the effects of complex nonlinear response of E_r , and theoretical model has been verified using HIBP measurement data with high time resolution [5], only recently. However, comparison between model and experiment is very limited, and there is no finding that can be extrapolated to ITER/DEMO other than the scaling rule of threshold power according to the rule of thumb.

In this study, we analyzed the structure generation of the edge radial current, j_r , by means of Poisson's equation with a measured E_r data from CXRS diagnostic in JT-60U NBI heating plasmas [5-9]; $j_r^{Exp.} = -\varepsilon_0 \varepsilon_{\perp} \frac{\partial}{\partial t} E_r$ (1). Here, ε_{\perp} is the relative dielectric constant of toroidal plasmas. As shown in Fig. 1, a slow L-H transition takes place about 200 ms after the start of NBI heating, which evolves into a fully-developed H-mode spending a few 100ms. During this slow transition process, a smooth decrease in D_{α} emission, increase in the edge line-averaged electron density and steepening of ion temperature take place. The E_r -well bottom value at ~ 3 cm inside the LCFS becomes large up to -40 kV/m as a similar time-scale of the change in the density, while the j_r shows a local Max. value of ~ 0.01 - 0.02 A/m² just after a slow L-H transition and its broader radial structure propagates toward plasma core region in the time-scale of ~ 100 ms as seen in the pedestal development. On the other hand, we found a more strongly localized radial structure in the $j_r \sim 0$ (~ 0.4 - 0.5 A/m²) with positive or negative polarities after development of ETBs, which occurred spontaneously with a fast time-scale. This observation suggests a co-existence of the non-linear physical mechanism for the j_r generation in terms of its spatio-temporal variation.

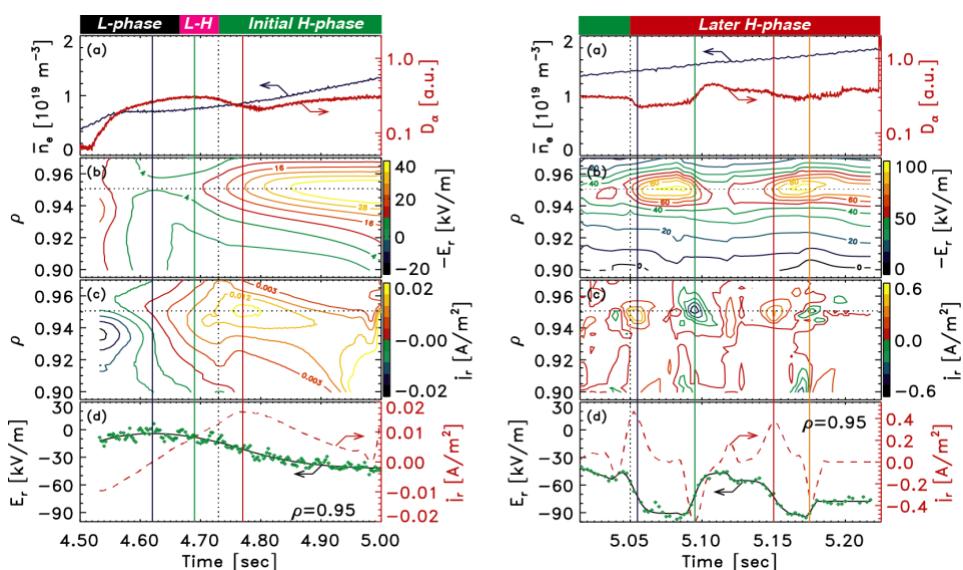


Fig. 1 Waveform for E049219 discharge, showing different time-scales for the bifurcations in E_r - j_r .

As shown in Fig. 2 (Left), we found that the order of the $j_r^{\text{Exp.}}$ during the L-H transition phase (e.g. $t = 4.690$ s) does not contradict to the fast ion loss current $j_r^{\text{Fast.}}$, which can be estimate by the OFMC-code [9]. However, a more detailed comparison exhibits that the $j_r^{\text{Fast.}}$ solely seems be not enough for the driving force to cause the slow L-H transition, since the $j_r^{\text{Exp.}}$ having a local peak

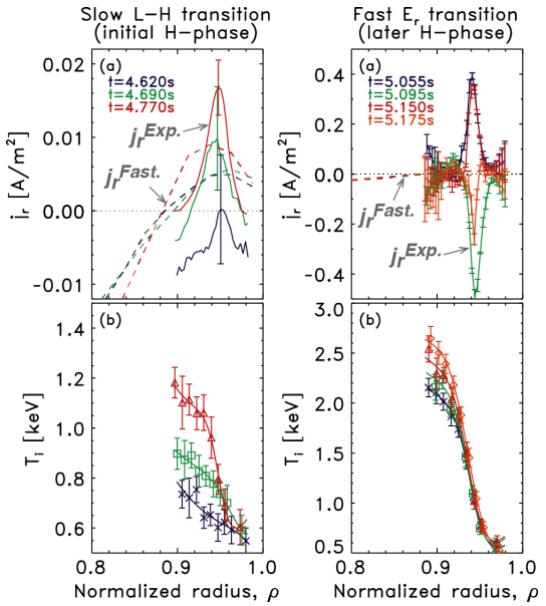


Fig. 2 Radial profiles for (a) j_r and (b) T_i .

structure, at which the T_i profile have their own steepest gradient values, becomes more positive than that for the $j_r^{\text{Fast.}}$ across to this phase. Furthermore, the $j_r^{\text{Fast.}}$ during the E_r transition at the later H-phase is smaller than the observation by one order of magnitude, suggesting another additional different driving forces (e.g. pressure gradient of bulk ions and/or turbulence) according to each transition type having different time-scales.

There are many processes which are associated with the radial current as follows;

$j_r^{\text{Cal.}} = j_i^{\text{lc}} + j_i^{\text{bv}} + j_i^{\text{v}\nabla\nu} - j_{e-i}^{\text{wave}} + j_i^{\text{CX}}$ (2). We calculated the $j_r^{\text{Cal.}}$ value by taking all five terms in Eq (2) into account using the same definition as Ref. 6-7. As a result, we confirmed that the $j_r^{\text{Cal.}}$ value based on the bifurcation model is qualitatively in agreement with experimental result, especially for the later H-phase with fast time-scale, while a more detailed comparison between them is needed. As shown in Fig. 3, the $j_r^{\text{Cal.}}$ value makes an abrupt change at the normalized E_r value, $X \sim 1$ at the forward E_r -transition

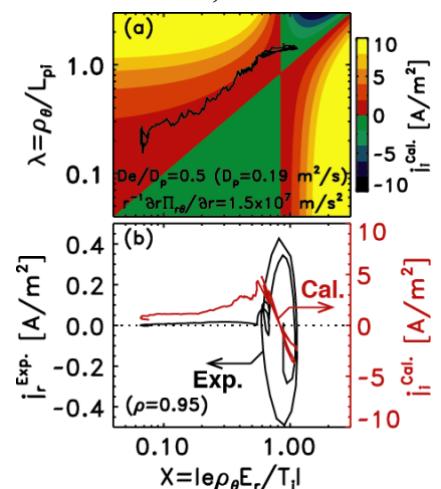


Fig. 3 Relationship between λ , j_r , and X .

at $t \sim 5.05$ s. During this phase, the bulk-viscosity term in the $j_r^{\text{Cal.}}$ value takes a value close to zero as that seen in JFT-2M [5-7]. On the other hand, the $j_r^{\text{Exp.}}$ value exhibits a jump toward negative one at the backward E_r -transition at $t \sim 5.08$ s, and X value returns to the original one as that seen just before the forward E_r -transition, and hence the normalized pressure gradient value, λ , can not exceed critical value of $O(1)$. This observation suggests the existence of wave-convection term that could compensate the bulk-viscosity term as suggested in Ref. 5, while it depends on the parameter selection, such as plasma diffusivity. Determination of parameters is the focus of future research.

The authors deeply appreciate the continued research and operational efforts of the entire JT-60 team. Authors acknowledge the partial support by Grant-in-Aid for Scientific Research (JP 15K06657, JP 15H02155, JP 16H02442) and collaboration programs between QST and universities and of the RIAM of Kyushu Univ., and by Asada Science Foundation.

- [1] S.-I. Itoh and K. Itoh, Phys. Rev. Lett. **60**, 2276 (1988).
- [2] K. Itoh and S.-I. Itoh, Plasma Phys. Control. Fusion **58**, 045017 (2016).
- [3] R. J. Taylor, et al., Phys. Rev. Lett. **63**, 2365 (1989).
- [4] P. H. Diamond, et al., Plasma Phys. Control. Fusion **47**, R35–R161 (2005).
- [5] T. Kobayashi, et al. Sci. Rep. **6**, 30720 (2016).
- [6] K. Itoh and S.-I. Itoh, Plasma Phys. Control. Fusion **38**, 1–49 (1996).
- [7] T. Kobayashi, et al., Nucl. Fusion **57**, 072005 (2018).
- [8] M. N. Rosenbluth and F. L. Hinton, Phys. Rev. Lett. **80**, 724–727 (1998).
- [9] M. Honda, et al., Journal of the Physical Society of Japan **80**, 114502 (2011).