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Abstract

The description of the energy transport processes in the laser plasma is crucial for cap-

turing the dynamics of the laser–target interaction relevant to shock ignition [1] and pre-

pulses of ultra-intense lasers [2]. The diffusion approximation of the heat and radiation

transport become inadequate even for the laser intensities . 1015 W/cm2 in many cases

[3]. The non-local nature of the transport phenomena must be considered due to long mean-

free-paths of the heated electron species compared to the characteristic length of the plasma

temperature variations. The shift in the physical models of plasmas must be reflected in the

numerical treatment of the problem too. The high-order finite element methods present a

favourable option. We have proposed such method recently [4] and continue in the effort

towards better modelling and understanding of the non-local phenomena by means of nu-

merical simulations.

Introduction

Hydrodynamic description presents a compelling option for description of laser plasma.

However, the fluid framework can not capture the details of transport phenomena going

beyond the local diffusion theory [3]. An effort is then made to overcome this limitation by

formulation of a closure model reflecting the kinetic nature of the species.

The transport phenomena in plasmas are well-described in the fluid approximation by

Vlasov equation, which models the kinetics of the species with an appropriate collision

operator. In order to formulate a numerically efficient closure model, we restrict ourselves

to Bhatnagar–Gross–Krook (BGK) collision operator [5] as used recently in [4]. The kinetic
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equation for electrons then reads:
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where f = f (~x,~v, t) is the distribution function of the electrons in the phase space at space

coordinate ~x, velocity ~v and time t. The directional cosine of the velocity is denoted as µ .

The vector fields ~E and ~B are the electric and magnetic field respectively. The constants qe,

me denote the charge of electron and its mass, whereas νe and νei are the electron-electron

and electron-ion collision frequencies respectively.

For the long timescales of interest in hydrodynamic simulations, the transport can be

considered as stationary and the assumption of low anisotropy is justified as well. The

Cartesian expansion of the distribution to the first order in form f = f0 +~n ·~f1 gives [6]:
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where λe = v/νe,λei = v/νei. Considering only the case without magnetic field in the fol-

lowing, the non-local Ohm’s law can be obtained by integrating (3) over velocity as:
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where the symbols λs = 1/(λ−1
e +λ

−1
ei ), ~E = qe

me
~E were introduced.

The quasi-neutrality constraint of the classical hydrodynamics ∇ ·~j = 0 considering

only irrotational currents results in the zero current condition ~j = 0 giving the explicit

formula for the electric field:

~E =
∇

∫
f0v7 dv

6
∫

f0v5 dv
. (5)

Numerical model

The approach to numerical solution of the system (2-3) is to solve it on the spatial do-

main and performing outer integration over the velocity space from 7vth (vth is the electron

thermal velocity), where the f0 and ~f1 are set equal zero, to zero (decelerating P1). For this

purpose, the fully implicit backward Euler scheme is used. The next step of the procedure

is calculation of the electric field according to (5), which appears non-linearly in the sys-

tem, so Picard iterations are performed to obtain the implicit self-consistent electric field

~E . Moreover, the temperatures are updated implicitly, where the source terms are linearised

reducing the computation overhead [7]:

fM(T n+1) =
∂ fM

∂T
(T n+1−T n)+ fM(T n) = SAT n+1 +Sb . (6)
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Returning back to the solution on the spatial domain, finite element method (FEM) is

applied enabling setting arbitrary polynomial order of the elements and making the for-

mulation compatible with the high-order curvilinear hydrodynamic code PETE [8]. The

following choices of the function spaces are made on the computational domain Ω:

• discontinuous temperatures: Te ≈ ϕ ·Te ϕi ∈ L2(Ω) ∀i

• discontinuous f0 distribution: f0(v)≈ ψ · f0(v) ψi ∈ L2(Ω) ∀i

• Raviart-Thomas ~f1 distribution: ~f1(v)≈ ϒ · f1(v) ϒi ∈ Hdiv(Ω) ∀i

• Nedelec electric field: ~E ≈ ξ ·E ξi ∈ Hcurl(Ω) ∀i

Next, the discrete matrices are constructed as follows:
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∫

Ω
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The discrete form of the system (2,3) decelerating in velocities with the step ∆v can be

written as (f− = f(v−∆v), f+ = f(v)):
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eliminating f0
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Finally, the matrix can be rearranged to a more convenient form giving better insight into

the properties of the matrix (disregarding the boundary terms B∂Ω for the moment):(
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The system is then hybridized introducing Lagrange multipliers γ at the skeleton of

the computation mesh imposing weak continuity of the ~f1 elements [9]. This procedure

greatly reduces the size of the problem approximately by factor of the polynomial order of

the elements and can be fully parallelized. The resulting linear system for γ is solved by

standard algorithms for non-symmetric sparse matrices.
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Conclusions

An efficient numerical scheme based on high-order finite elements for P1 transport

with BGK collision operator was proposed. Unlike the Sn model proposed in [4], an ex-

plicit formula (5) for the self-consistent electric field is found and the energy spectrum of

the electrons is fully resolved. However, the properties of the matrix (14) originating from

P1 model itself may deteriorate the numerical solution. Finally, a great increase of compu-

tational efficiency was achieved by performing hybridization of the discrete formulation.
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