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By numerically solving the collision-free plane-discharge problem with Maxwellian
electrons and a neutral Maxwellian ion source of arbitrarily high ion-source tem-
perature, it has been found recently that the electric field E in both the plasma and
sheath regions can be expressed in terms of the sheath potential ¢ via the equation
e2E2/2 +n,T,/2 = A (cf. Fig. 7 in Ref. [1]), with n,, T, the electron density and tempera-
ture, A x e" %5 /4, and ¢; the plasma edge potential. The idea of finding such a universal
sheath solution in the form &= = P(¢, T,;) will be further elaborated here as follows.

The reference sheath model corresponds to a collision-free discharge of length 2L,
located between two plane-parallel plates and symmetric with respect to the sym-
metry plane at x = 0. The normalized distance, ion and electron densities, velocities,
temperatures, electrostatic potential Velocity distribution functions and electric field
are normalized as § & x, 2= © n;,, Lo, 2o, ; o T, L i © D =—g, Cff{l o fi,
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kT / - E,and E=—-d®/ dx © d(p /dx, respectively, with e the positive elementary charge,
k the Boltzmann constant, s, = (kT./m;)'/? the zero-T; ion-sound velocity, and m; the
ion mass. For completeness we also introduce the smallness parameter ¢ = Ap/L, where
Ap = (€okTe0/nge?)/? is the electron Debye length, with €p the "vacuum permeability".
The ion source of strength S; = RinyngpeP® KT, g=m;v?|2kT, /(2mkT,,)1/? corresponds to the
Bissell and Johnson (BJ) model [2], which in the limit T}, — 0 reduces to the Tonks and
Langmuir (TL) discharge where, according to Harrison and Thompson [3], f determines
the source profile as a function of potential.

With these assumptions and definitions, the solutions of the Boltzmann equation for
the ion VDFs in the quasineutral plasma region take, in the limit of cold ion sources
and for warm ion sources with T;,, > 0.5, the TL and BJ forms (for the latter see our

accompanying paper ’1.3002)
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respectively, where Fp(z) denotes the Dawson function. The ion densities, directional
velocities, temperatures and higher velocity moments such as heat and energy fluxes
have to be calculated as the (position-dependent) m? moments <U:”> = f fiv"dv/n;. The
electrons, on the other hand, are assumed to be Maxwellian-distributed in both the
plasma and sheath regions with constant temperature T, = T,9 = 1.

The above VDFs have been derived under the condition of strict plasma neutrality,
ni—n, =n;—e"? =0, which breaks at some point ¢, <1 characterized by the electric-field
singularity. The latter is identified as the plasma edge, ¢, = @pe(T»), at which both the

unified Bohm criterion u?, = MI.Z((ppE) =1+ x;peTipg and the condition d(n; —n.)/dp =0
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are automatically satisfied. The plasma-edge potential ¢pg, ion temperature T;pg, and
ion polytropic coefficient x;pg are tabulated in Refs. [1, 4], where the quasi-analytic
approximations to their dependencies on the source temperature and the particular

p-profiles are presented as well.

At the plasma edge the expressions (1) re-
duce to the particular ones with ¢ = @pg,
and in the region between the plasma edge
and the wall the ion VDFs become func-

T,=3,T,=1.074, T,.=0.468
T, ion-source temperature
T,, ion temp. at plasma center|
T, pe fon temp. at plasma edge

0.8 Aop =0
. 2 . _ . _
tions of v°/2 — Ap, with A¢ = ¢ —@pr. While f, (V36 —— Ap=0.5
in the TL model the ion VDF in both the o — Ao =1
plasma and sheath regions is characterized ' —Ap=2
0.2 — Ap =3

by a single population with maximum ve-
locities limited to +/2¢, the situation in the 005 N 2 3 , s 6
BJ model is more complex (cf. our accom- Figure 1: Illustration of BJ ion VDFs and the ef-

panying EPS paper 1.3002). At the plasma fect of acceleration of slow ions (the "left" branch)
edge and in the sheath, however, the ion at the sheath edge on their density.

VDF reduces to only two populations, both characterized by v > 0, which we call "left"
and "right" branches, as considered with respect to a non-differentiable VDF-maximum.
In Fig. 1 we illustrate the ion VDFs at the PE and at four locations inside the sheath,
with the marked areas (densities) belonging to the "left branches" at the first three po-
tentials, indicating the fastest density drop between the first and second ones, i.e., in
the proximity of the PE.

Note that the VDFs in Fig. 1 are normalized to unity at the PE rather than at the
plasma center. Moreover, we set there ¢pr = 0 and hereinafter replace Ap with ¢. This
choice simplifies employing in the sheath analysis some additional VDFs which are
not consistent with the quasi-neutral plasma models. Such VDFs are the Dirac delta
distribution and the rectangular VDEF, also known also as the "waterbag (WB)" VDEF [5]:

fiws(, @) = A[H(v-0-)-H(v-04)], with A =no/(vo+-2o-), (2)
where H(z) is the Heaviside step function and o2 = 0(2) . +2¢, with the properties n =
Ay —v.), u= @y +v_)/, T =(vy —v_)?/12 and x = 3. At the sheath entrance the WB

VDF must satisfy the conditions n; —n, = 0 and d(n; —n,)/de = 0. In this work we have
revealed for the first time that the latter condition requires fulfillment of vp,vo- = 1.

Thus, the conditions vgy > vp- > 0 and vp,v9- = 1 together can be regarded as the
particular generalization of the classical Bohm criterion to warm adiabatic ions. In this
context we note that in the limit vp, — vo_ = vg the waterbag distribution reduces to the
Dirac delta distribution Ad(v —vp) (for which T; = 0). Increasing the temperature at the
sheath entrance, however, requires vy to decrease towards zero. In the WB model with
high temperature the ion velocity and thus, due to u;n; = const, also the ion density, is
much more sensitive to the electric field than in the case of the self-consistent warm BJ
model, cf. the densities represented by the color-filled areas below the left branches of
the VDFs in Fig. 1.

We start investigating the sheath region by comparing the charge densities and their
derivatives corresponding to all types of ion VDFs considered here, as illustrated in
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Fig. 2(a). In Fig. 2(b) we illustrate the main quantity of interest here, i.e., the electric-
tield pressure which, according to the Poisson equation n; —n, = d(e2E?/2)/ do, can be
found from 2E?/2 = f (n; —ne)de. It is indicative that the curves corresponding to the
self-consistent (B] and TL) models are similar, i.e., apparently identical to each other
to within the accuracy of some hypothetical multiplicative constant which depends on
the source temperature. Note that the waterbag and 6 distributions exhibit qualitatively
similar behavior but quantitatively depart considerably from the self-consistent ones.
In previous works, the supposed multiplicative constant has been represented by the
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Figure 2: Comparisons of charge density and its derivative (a) and the corresponding electric-field-
pressure density (b) within the sheath for the self-consistent and the artificial VDFs with cold and warm
ions at the sheath entrance.

factor exp(—¢pg) referred to above. In the sheath formulation, however, where we
choose the plasma-edge (i.e., sheath-entrance) potential to be zero and normalize the
PE VDFs to unity, we do not expect dependence on ¢pg any more.

In order to shed more light onto functional dependence of €2E?/2 on ¢ in the present
normalization we plot in Fig. 3(a), similarly as in Ref. [1], results from Fig. 2(b) in the
form & = €2E%/2 4 (0 — 1) T, /2 (assuming 1,0 =1, n, = e ¢ and T, = 1). From Fig. 3(a),
it emerges that also in the sheath normalization all curves apparently exhibit good
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Figure 3: Representation of a particular combination of the electrostatic and the kinetic electron pres-
sures which apparently exhibit, linear dependence on the sheath potential (a), and its reconstruction via
the present trial function (b).

linearity (cf. the linear fitting functions sketched). However, we here leave open the
question of finding a possible multiplicative factor by which these curves would become
identical to each other. Instead, we simply approximate all of these curves by & =
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C(Ty)p, taking the estimated value C(T)) = 2 as a reference. The reference equation
2E2/2=e"?/2+ 2¢ —1/2 turns out to fit well the first derivative d(e2E?/2)/ dp = (n;—n,)
obtained, e.g., for T, = 3 in Fig. 2(a), but not also the second one, d?(e2E?/2) /al(p2 =
d(n; —n.)/dp = e~ ? /2. We adjust this behavior by multiplying the given solution by the
factor erf(2 1/¢p) (Where erf stands for the error function), so that the second derivative of
the electric-field pressure becomes d*(¢E?/2)/dp?* = erf(2 /@)e™? /2. After integrating
this expression we obtain

e?E> 5 1 s 1 _
—— = —erf(/5¢)(10p — 11) + e Y o+ e Perf(/2¢0) = P(p). 3)

2 50 5 2
In Fig. 3(b) we show the results of the electric-field pressure thus reconstructed
and the corresponding derivatives, in comparison with the curves obtained for the
representative case T, = 3. Based on the relatively good agreement of the results one

may conclude that the expression (3), rather than the above-mentioned expression from
previous work, can serve as a reference one for finding the universal sheath solution
that will be exact regarding other temperatures as well.

The last step here consists in finding S —— a1 0468
sheath solution in the form ¢(x), start- our "universal* approximation %
ing from the definition of the electric 61 <
field dp/dx = E, with E = V2P/e, ie, x = ¢ o U s
€ f dp/ V2P. Upon applying this method to 4T ‘2 -
the electric fields given by the expression (3) Ay, (T =0.468)=2.5 ~ /8 'qg,’
and finding the exact analytic field for the T §_ =
representative case T, = 3, we obtain the g ‘_g
0 L 1
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respective sheath solution as presented in 20 35 L 35
Fig. 4. It should be noted that the results do

not depend on the wall potential ¢ (as ob-
tained from equality of the ion and electron currents to the wall), which in Fig. 4 is
given there just for illustration. Any other potential and the reference sheath position

Figure 4: New sheath representation

would be equally good, while the results obtained with the two methods obviously,
coincide surprisingly well.

Since no appreciable attempts towards formulating a consistent sheath theory with
warm ions have been reported so far, the present findings may be considered as a
milestone towards developing a possible fully universal parametric sheath solution.
From our present work it emerges that such a solution is not expected to depend
strongly on the ion temperature, provided that its shape is consistent with the adjacent
quasi-neutral plasma. Artificial VDFs, however, including the "traditional" waterbag
and delta functions, have been shown here to be bad candidates for searching such a
universal solution.
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