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I.  Introduction 

Balbus and Hawley, in 1991, were able to explain that accretion disks undergo a powerful 

shearing instability transmitted by a weak magnetic field that is responsible for the origin of 

turbulent viscosity in accretion disks, which they termed as magnetorotational instability 

(MRI) [1]. In a protoplanetary disk system (PPD), various nonlinear magnetic activities that 

are taking place, are strongly subjected to non-ideal magnetohydrodynamics (MHD) effects 

due to the low ionisation of the disk plasma.  

Inutsuka and Sano, in 2005, showed that in a weakly ionised PPD, the MRI-driven turbulence 

produces a strong electric field in the neutral co-moving frame which leads to plasma heating 

at some parts of the disk [2]. In 2015, Okuzumi and Inutsuka reported that this plasma heating 

reduces the electric conductivity J/E before the onset of impact ionization. Also, the influence 

of the plasma heating on ionisation degree of the gas results the Ohm's law to be nonlinear in 

𝑬 [3]. It has been observed that this plasma heating triggered by the electric field eventually 

leads to an asymmetric electron distribution in the protoplanetary disk, which can be 

represented by the Davydov distribution function [4].  

In this paper, we investigate how this asymmetry in electron distribution plays a significant 

role in the behaviour of electrostatic solitary waves (ESW) that are produced in the PPD. In 

Section II, we give a brief description of MRI turbulence and the resultant plasma heating 

in the disk as well as electron heating in a PPD. In Section III, we put forward our basic 

formalism of the Sagdeev potential. Finally in Section IV, we summarise the work. 

II.  MRI turbulence and plasma heating 

Consider a weakly ionised plasma with an abundance of neutrals. In absence of any 

accelerating field, the electrons tend to thermalize with the neutrals. However, when there is 

an external electric field, electrons are accelerated heavily due to their mobility and low 

energy transfer during binary collisions. So, there exists an equilibrium in such a plasma, 

where the external electric field 𝐸 ≫ 𝐸!"#$  such that the random thermal energy of the 

electrons greatly exceeds that of the neutrals, namely 𝑣!!! ≫ √ 𝑇! 𝑚! , where the `n' 

subscript denotes the neutrals, and 
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                                     𝐸!"#$ =
𝑇!
𝑒𝑙!

6𝑚!

𝑚!
                                                                      (1)   

where 𝑙! = 𝑛!𝜎!" !! is the electron mean free path and 𝜎!"  is the electron-neutral 

momentum-transfer cross section [2]. For a hydrogen-rich environment 𝜎!"~10!!"cm! at 

electron energy < 10 eV we have 

                             𝐸!"#$~10!!𝑇!""𝑛!" esu cm!!.                                                          (2) 

In the above relation, 𝑇!"" is the temperature measured in terms of 100 K and 𝑛!" is the 

electron density measured in terms of 10!"cm!!. It can be shown that  

                                     
𝐸!"#
𝐸!"#$

≈
200
Λ

100
𝛽!

𝑛!"
!!!,                                                               (3)   

which is independent of the gas temperature 𝑇. In the above expression, Λ = 𝑣!"! 𝜂Ω is the 

Elsasser number, 𝛽!  is the plasma 𝛽  of the vertical magnetic field, and 𝑣!"  is the 

corresponding Alfven velocity. For electron heating, we must have 𝐸!"# ≫ 𝐸!"#$ , which puts 

an upper limit on Λ. At the same time, for MRI turbulence to be sustained so that 𝐸!"# is 

maintained sufficiently strong, one must have Λ > Λ!"#$. So, for sustained MRI turbulence 

heating of the electrons, we should have,   

                                        Λ!"#$ ≤ Λ ≤ 200 100 𝛽!  𝑛!"
!!!.                                                (4)     

We have Λ~0.1− 1 and so the above condition can be satisfied in the parameters are in the 

range 𝑛!"~10! − 10! and 𝛽!~100− 1000 which are typical of PPDs. 

Electron distribution with heating 

We now consider the Davydov distribution function in steady state [2], which is given by, 

              𝑓! 𝑬.𝒗! = 1−
𝑒𝐸𝑙
𝑇

𝜖𝑬.𝒗
𝜖 + 𝜒𝑇 𝑓!! 𝐸, 𝑣                                          (5) 

where, 𝑬 = 𝑬 𝐸, 𝒗 = 𝒗 𝑣 and  

               𝑓!! =
𝑚
2𝜋𝑇

!/! 𝜖 𝑇 + 𝜒 !

𝑊 𝜒 𝑒!! !                                                    (6) 

with 

𝑊 𝜒 = 𝜒! !!!𝑈
3
2 ,
5
2+ 𝜒,𝜒  

where, 𝑈 𝑥,𝑦, 𝑧  is the confluent hypergeometric function of the second kind. In the above 

equation 𝑓!! is the symmetric part of 𝑓! that depends on the magnitude of 𝑬 and 𝒗 but not on 

the angle between them cos!! 𝑬.𝒗 . In the limit of weak electric field 𝐸 ≪ 𝐸!"#!  𝑓!! 

reduces to the familiar Maxwellian distribution and in the limit of strong electric field 
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𝐸 ≫ 𝐸!"#$ , 𝑓!! reduces to the Druyvesteyn distribution function [2]. In the presence of an 

electrostatic potential 𝜙, the distribution function becomes, 

                  𝑓! 𝑬.𝒗! = 1−
𝑒𝐸𝑙
𝑇

𝜖 − 𝜖! 𝑬.𝒗
𝜖 − 𝜖! + 𝜒𝑇

𝑓!! 𝐸, 𝑣 .                             (7) 

where, 𝜖! = 𝑒𝜙. The symmetric part of the distribution can be written as, 

         𝑓!! =
𝑚
2𝜋𝑇

!/! 𝜖 − 𝜖! 𝑇 + 𝜒 !

𝑊 𝜒 𝑒! !!!! ! .                                                  (8) 

Integrating the above distribution in the spherical co-ordinate, we can derive the 

corresponding electron density, which can be written as 

                                             𝑛! = 4𝜋 𝒗!𝑓𝒆 𝑬,𝒗  𝑑𝒗
!

!!

                                                       (9)     

where the volume element of each spherical shell is 4𝜋𝒗!𝑑𝒗. Integrating the symmetric and 

asymmetric part of the distribution individually we can derive the symmetric and asymmetric 

electron densities respectively. After combining both the densities, we can finally write the 

total electron density, in the form  

                                                 𝑛! = 𝑛!"# + 𝑛!"#$.                                                          (10) 

III.  Nonlinear electrostatic waves 

Our basic plasma model comprises of the ion fluid equations, Boltzmannian-like electrons 

obeying Davydov's asymmetric velocity distribution, and Poisson's equation, which is, 

                                      𝜖𝟎
𝜕!𝜙
𝜕𝑥! = 𝑒 𝑛! − 𝑛! = 𝐹 𝜙                                                     (11) 

where following energy conservation for the ions, the ion density 𝑛! can be written as,  

                                      𝑛! = 𝑛! 1−
2𝑒𝜙
𝑚!𝑢!!

!!/!

                                                             (12) 

where, ions are assumed to be cold. The electron density is given by eq. (10). The physical 

quantities are normalized accordingly. The Poisson equation can be re-casted in the form, 

                                    
1
2
𝑑𝜙
𝑑𝑥

!

= − 𝐹 𝜙

!

!

 𝑑𝜙 ≡ 𝑉 𝜙 ,                                               (13)   

where 𝑉 𝜙  represents Sagdeev potential. In case of Davydov electrons, Sagdeev potential 

must be calculated numerically, shown in the left panel of Fig.1 .  
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Limits on Davydov electrons 

For 𝝓 ≪ 𝟏: We note that the condition for the Davydov electrons 𝑉!  can be found only 

for  𝜒 ≪  1.  Noting that  𝑑𝑉! 𝑑𝜙 = −𝐹 (𝜙) , we can expand 𝑉!!! = −𝑑𝐹(𝜙) 𝑑𝜙 around 

( 𝜙 = 0,𝜒 = 0 ) , 𝑉!!! 0 ≅ 2𝜒 + (1 𝑀!)− 1, from which, we can see that for a solitary 

structure to form, we must have 0 < 𝜒 < 1 2 and 𝑀 > (1− 2𝜒)!
!
!, which puts an upper 

limit on 𝜒 for small 𝜙.  

For arbitrary 𝝓:  For arbitrary 𝜙, a determination of analytical limits is not possible and we 

need to establish the limits numerically. In the right panel of Fig.1, the upper and lower limits 

of 𝑀 for Davydov electrons are represented by the curves labeled. So solitons can exist only 

in the shaded region between these two curves. The corresponding Maxwellian limits are 

represented by 𝑀!,!
!  which is found to be 1 < 𝑀 < 1.5852. 

IV. Summary and Conclusion 

In this paper, we investigate the formation of solitons in a protoplanetary disk, using a psuedo 

potential analysis. The asymmetric electron distribution resulting from the plasma heating due 

to MRI-driven turbulence is governed by the Davydov distribution function. The domain of 

soliton existence becomes larger with increasing asymmetry 𝜒. This signifies that we get fast 

moving and large number of solitons when the electron asymmetry becomes large in a 

protoplanetary disk.  
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Fig 1: (Left panel) Pseudo potentials for Davydov electrons for 𝑀 = 1.5 and 𝜒 = 1.51 and (Right panel) 

limits on 𝑀 and 𝜒 for Davydov electrons. The upper and lower limits are given by the curves labeled 𝑀!,!
!  
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