46" EPS Conference on Plasma Physics P5.4009

Nonlinear structures in a protoplanetary disk

Murchana Khusroo and Madhurjya P Bora

Department of Physics, Gauhati University, Guwahati-14, Assam, India

I. Introduction

Balbus and Hawley, in 1991, were able to explain that accretion disks undergo a powerful
shearing instability transmitted by a weak magnetic field that is responsible for the origin of
turbulent viscosity in accretion disks, which they termed as magnetorotational instability
(MRI) [1]. In a protoplanetary disk system (PPD), various nonlinear magnetic activities that
are taking place, are strongly subjected to non-ideal magnetohydrodynamics (MHD) effects
due to the low ionisation of the disk plasma.

Inutsuka and Sano, in 2005, showed that in a weakly ionised PPD, the MRI-driven turbulence
produces a strong electric field in the neutral co-moving frame which leads to plasma heating
at some parts of the disk [2]. In 2015, Okuzumi and Inutsuka reported that this plasma heating
reduces the electric conductivity J/E before the onset of impact ionization. Also, the influence
of the plasma heating on ionisation degree of the gas results the Ohm's law to be nonlinear in
E [3]. It has been observed that this plasma heating triggered by the electric field eventually
leads to an asymmetric electron distribution in the protoplanetary disk, which can be
represented by the Davydov distribution function [4].

In this paper, we investigate how this asymmetry in electron distribution plays a significant
role in the behaviour of electrostatic solitary waves (ESW) that are produced in the PPD. In
Section II, we give a brief description of MRI turbulence and the resultant plasma heating

in the disk as well as electron heating in a PPD. In Section III, we put forward our basic
formalism of the Sagdeev potential. Finally in Section IV, we summarise the work.

II. MRI turbulence and plasma heating

Consider a weakly ionised plasma with an abundance of neutrals. In absence of any
accelerating field, the electrons tend to thermalize with the neutrals. However, when there is
an external electric field, electrons are accelerated heavily due to their mobility and low
energy transfer during binary collisions. So, there exists an equilibrium in such a plasma,

where the external electric field E > E_,;; such that the random thermal energy of the

electrons greatly exceeds that of the neutrals, namely v, > v (T,/my), where the “n'

subscript denotes the neutrals, and
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where [, = (n,0,,)"'is the electron mean free path and g,, is the electron-neutral
momentum-transfer cross section [2]. For a hydrogen-rich environment g,,~10"1°cm? at
electron energy < 10 eV we have

E . it~107°T yon,, €sucm™2, 2)
In the above relation, Ty is the temperature measured in terms of 100 K and n,, is the

electron density measured in terms of 1022cm™3. It can be shown that
Eygi 200 /100y 2
~ ( 7 )iz, 3)

Ecrit A
which is independent of the gas temperature T. In the above expression, A = vZ,/nQis the

Elsasser number, [, is the plasma [ of the vertical magnetic field, and vy, is the
corresponding Alfvén velocity. For electron heating, we must have Eyz; > E.pi, Which puts
an upper limit on A. At the same time, for MRI turbulence to be sustained so that Eyg; 1s
maintained sufficiently strong, one must have A > A,,;;. So, for sustained MRI turbulence

heating of the electrons, we should have,

1

Aerie < A < 200(100/B,) n, 2. (4)
We have A~0.1 — 1 and so the above condition can be satisfied in the parameters are in the
range n;,~10? — 10° and ,~100 — 1000 which are typical of PPDs.
Electron distribution with heating
We now consider the Davydov distribution function in steady state [2], which is given by,

eEl ¢E.D

fe(E.-ve) = (1 T e+ T

>fe0(Er v) (5)

where, E = E/E,D = v/v and

m )3/2 (e/T + x)*

feO = (ZTTT WO{) e_E/T (6)

with

35
W(X) = X3/2+XU (E’E + X!X)
where, U(x,y, z) is the confluent hypergeometric function of the second kind. In the above
equation f,q is the symmetric part of f, that depends on the magnitude of E and v but not on

the angle between them COS_l(E. D). In the limit of weak electric field (E < Egpit) feo

reduces to the familiar Maxwellian distribution and in the limit of strong electric field
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(E >» E it ), feo reduces to the Druyvesteyn distribution function [2]. In the presence of an
electrostatic potential ¢, the distribution function becomes,

e_El(e — ep)E'.ﬁ

T 6_617—_'_)(71) feo(E, V). 7

f.(E.v,) = <1 -
where, €, = e¢. The symmetric part of the distribution can be written as,

o m 32 [(E—Ep)/T-i-)(]X e VT
feO - (27TT) W(X) e ( p)/ .

Integrating the above distribution in the spherical co-ordinate, we can derive the

(8)

corresponding electron density, which can be written as

[ee]

Ne = 41 f v2f,(E,v) dv 9)

—0
where the volume element of each spherical shell is 4mv?dv. Integrating the symmetric and
asymmetric part of the distribution individually we can derive the symmetric and asymmetric
electron densities respectively. After combining both the densities, we can finally write the
total electron density, in the form
Ne = Ngym + Nasym- (10)

ITI. Nonlinear electrostatic waves

Our basic plasma model comprises of the ion fluid equations, Boltzmannian-like electrons

obeying Davydov's asymmetric velocity distribution, and Poisson's equation, which is,

0%¢
€55 = elne =) = F(9) (11)
x
where following energy conservation for the ions, the ion density n; can be written as,
1 2e¢ o 12
n=n -—
i 0 miu(% ( )

where, ions are assumed to be cold. The electron density is given by eq. (10). The physical
quantities are normalized accordingly. The Poisson equation can be re-casted in the form,
1 /dgp\° 4
2(52) == [ Fe#) do = vee, (13)
0
where V (¢) represents Sagdeev potential. In case of Davydov electrons, Sagdeev potential

must be calculated numerically, shown in the left panel of Fig.1 .
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Fig 1: (Left panel) Pseudo potentials for Davydov electrons for M = 1.5 and ¥y = 1.51 and (Right panel)

limits on M and y for Davydov electrons. The upper and lower limits are given by the curves labeled M2 _

Limits on Davydov electrons

For |¢| < 1: We note that the condition for the Davydov electrons (V) can be found only
for y « 1. Noting that dVp/d¢ = —F (¢), we can expand V) = —dF(¢)/d¢ around
(¢p=0,xy=0),Vy(0) =2y + (1/M?) — 1, from which, we can see that for a solitary

structure to form, we must have 0 < y < 1/2and M > (1 -2 )()_%, which puts an upper
limit on y for small ¢.

For arbitrary ¢: For arbitrary ¢, a determination of analytical limits is not possible and we
need to establish the limits numerically. In the right panel of Fig.1, the upper and lower limits
of M for Davydov electrons are represented by the curves labeled. So solitons can exist only
in the shaded region between these two curves. The corresponding Maxwellian limits are
represented by MY_ which is found tobe 1 < M < 1.5852.

IV. Summary and Conclusion

In this paper, we investigate the formation of solitons in a protoplanetary disk, using a psuedo
potential analysis. The asymmetric electron distribution resulting from the plasma heating due
to MRI-driven turbulence is governed by the Davydov distribution function. The domain of
soliton existence becomes larger with increasing asymmetry y. This signifies that we get fast
moving and large number of solitons when the electron asymmetry becomes large in a

protoplanetary disk.
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