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Observational evidence is consistent with the generation and maintenance of the magnetic

fields permeating the Universe being caused by turbulent dynamo. Galaxy clusters are weakly

collisional on scales relevant for the dynamo process. However, due to the computational chal-

lenges related to the inherently three-dimensional and multiscale nature of dynamo, only a very

few recent works have gone beyond an MHD description [1, 2], using a hybrid treatment.

We perform fully kinetic continuum simulations in an electron-proton plasma [3] of the

Galloway–Proctor (GP) [4] flow, using the kinetic-Maxwell solver of Gkeyll [5], for param-

eters producing dynamo in magnetohydrodynamics (MHD), and complement these with col-

lisionless fluid simulations using the 10-moment, two-fluid solver of Gkeyll [6]. We con-

sider scenarios with low fluid Reynolds number and high magnetic Prandtl number and a non-

magnetized initial condition, with relevance for galaxy clusters at typical seed field levels.
The kinetic-Maxwell solver of Gkeyll solves the kinetic equation ∂tfa+v ·∇fa+aa ·∇vfa =

C[fa], for all species a, with mass ma, charge ea, and distribution function fa. In the acceler-

ation term, aa = fa/ma + (ea/ma)(E + v×B), the electric and magnetic fields, E and B, are

computed from Maxwell’s inductive equations, and fa(x, t) is an externally prescribed forc-

ing. Collisions are modeled by a conservative Dougherty operator [7], C[fa]. The simulations

are initialized with Maxwellian electrons (e) and protons (i), with temperature Ta = 1keV,

density na = 2.3× 1028 m−3, and a flow with a characteristic speed u0 = M0

√
Te/mi and

M0 = 0.35. These parameters give a magnetic Reynolds number Rm≈ 13 (for Spitzer resistiv-

ity), a magnetic Prandtl number Pm≈ 20 (for collisional viscosity), and a collisional mean free

path λ= 1.25µm, for a box size (flow forcing scale) of L0 = 9.73µm and an assumed lnΛ = 10.

We consider the GP flow that produces a fast dynamo and requires a low critical Rm,

uGP(x, t) = u0{sin(k0z+ sinωt) + cos(k0y+ cosωt),cos(k0z+ sinωt),sin(k0y+ cosωt)},
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Figure 1: a) Volume integrated magnetic energy. Solid lines: kinetic simulation; dashed: resis-

tive MHD. Red, blue, and green correspond to the contributions from x, y, and z field compo-

nents to the total (black). For reference, (3/2)niTiL
3
0 = 5.1× 10−3 J. b) Wave number spectra

of magnetic energy, EB(k) (normalized to its value at k0, t= 0), for t= {0,1,2, ...,6}×10−11 s

(lines lightening). Solid lines: kinetic simulation; dashed: MHD; dotted line: MHD in the grow-

ing phase t= 2×10−10 s. Figures reproduced from [3].

where k0 = 2π/L0, ω = 2π/tt, and tt = L0/u0 ≈ 9× 10−11 s is the turnover time. The flow is

sustained by exerting a force of fi = Cfmiu(x, t)/ti on the ions, with the thermal ion passing

time ti =L0/
√

2Ti/mi; we set Cf = 1. The initial magnetic field isB0
∑

j 6=i,n bij,n cos[nk(xi+

ϕij,n)], where bij,n and ϕij,n are uniform random numbers on [0,1], n = 1,2, ...,N with N =

4, and B0 = 40T (the thermal electron gyro-radius is 2.7µm). In addition to uGP, the initial

electron flow also has a component producing a current consistent with the magnetic seed field.

The value Rm≈ 13 is sufficient for the GP flow to produce magnetic field growth in resistive

MHD, as confirmed using the high order finite-difference MHD solver Pencil Code [8]. We

find that, after a slight decay, the magnetic field starts to grow exponentially, as shown in Fig. 1a

(dashed). However, in the kinetic simulation, the field energy is observed to monotonically de-

cay (solid). The magnetic energy in the kinetic simulation rapidly develops a strongly decaying

wave number spectrum (solid lines in Fig. 1b), defined such that EB =
∫
EB(k)dk. In contrast,

the spectrum corresponding to the MHD simulation quickly assumes its weakly decaying shape

(dashed), which is then preserved in the phase of exponential growth (dotted).

The decay of the magnetic field energy in the kinetic simulation is caused by Landau damping

of the magnetic fluctuations. For an elementary magnetic perturbationBz(x,t= 0) =B0 cos(kx),

resistive magnetic diffusion ∂tB = η∇2B leads to a decay Bz ∝ exp(−γt) = exp(−k2ηt). In

a weakly collisional plasma, i.e., νei → +0, where νei is the electron-ion collision frequency,

such a fluctuation decays due to Landau damping with a decay rate γ = |k|3c2ve/(
√
πω2

pe) =

|k|3veme/(
√
πµ0nee

2) [9], where ωpe =
√
nee2/(ε0me), ve =

√
2Te/me is the electron thermal
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Figure 2: a) Magnetic energy normalized to its initial value in a collisionless fluid simulation.

Red, blue, and green correspond to the contributions from x, y, and z field components to the to-

tal (black). Dotted: e0.84t/tturn . b) Wave number spectra of magnetic energy,EB(k) (normalized

to its value at k0, t= 0), for t/tturn = 0.825×{0,1, . . . ,9}, (lines lightening). Dotted: k−7.7.

speed, −e and ne are the electron charge and density, and ε0 denotes the vacuum permittivity.

We would get this decay rate from resistive diffusion, if we replaced σ−1 with a scale-dependent

effective resistivity σ−1
eff = |k|veme/(

√
πnee

2), which corresponds to an effective magnetic dif-

fusivity ηeff ∼ ηλ/l, where λ= ve/νei is the Coulomb mean free path, and 2π/l = |k|.

Kinetic Gkeyll simulations reproduce the above damping rate in the collisionless limit, as

well as the decay rate corresponding to a magnetic diffusion due to Spitzer resistivity in the

short mean free path limit. When the collision frequency is increased from the collisionless

limit, the free streaming required by the Landau damping gets interrupted by collisions, leading

to a reduction of the damping rate, before magnetic diffusion takes over at even higher colli-

sionality. Thus, the damping rate assumes a minimum at intermediate collisionalities. We have

also confirmed that the Landau damping of magnetic perturbations diminishes as the plasma

gets magnetized and the gyro-radius becomes smaller than the scale of the perturbations.

When electrons are not magnetized down to the resistive scale lη, the cutoff of the magnetic

energy spectrum is expected to be located at a scale where the growth of magnetic perturbations—

due to stretching at the viscous scale, lν—is balanced by Landau damping. The ratio of this

Landau scale and lν is found to be lL/lν ∼M
1/3
0 Re−1/12Pm−1/3 in asymptotically scale sep-

arated systems, where M0 is the Mach number at the outer scale and Re is the fluid Reynolds

number. While M0 and Re are not very different to unity in galaxy cluster plasmas, Pm� 1,

thus lL� lη, i.e., the cutoff scale of magnetic perturbations is larger than in resistive MHD.

While fully kinetic simulations become extremely expensive with a spatial resolution suit-

able to capture the shrinking gyro-radius in a magnetized electron simulation with magnetic

field growth, the 10-moment collisionless fluid model of Gkeyll allows the exploration of such
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parameter regimes. It evolves the full pressure tensor of both particle species, allowing the

electron viscous stress to balance the induced electric field, which is a key mechanism in the

Landau damping of magnetic perturbations. As the field lines are stretched, folded and com-

pressed by the flow, without collisions or small-scale instabilities, the pressure anisotropy is

expected to grow without bounds, while the dynamo is unable to amplify the total field energy.

Here, we employ a closure that independently isotropizes the pressure for each species [10],

∂mQijm = (vt/liso)(Pij − pδij), where Qijm and Pij are the heat flux tensor and the pressure

tensor, vt is the thermal speed of the species, and liso is a parameter of dimension length which

sets the strength of the isotropization. We observe that increasing liso for electrons (ions) leads

to a stronger decay of the magnetic field (flow velocities) in simulations with no flows (no forc-

ing of flows). Thus, these parameters may be used to emulate systems with different effective

magnetic and fluid Reynolds numbers.

We use parameters similar to the kinetic simulation above, except that we use a reduced ion

mass mred
i = 100me, a box size of L0 = 24.3µm, a forcing factor Cf = 2.5, and a seed field

amplitude B0 = 1T (initially electrons are unmagnetized). To introduce dissipation in a sys-

tem with no explicit collisions, we set liso = L0/1280 for electrons and L0/12.8, corresponding

to a high effective magnetic Prandtl number. For these parameters, we find an approximately

exponential magnetic energy growth—with no significant change in the growth rate as the elec-

trons become magnetized—see Fig. 2a, which continues 5 decades before the smallest thermal

electron Larmor radius reaches grid scale (L0/128). The magnetic energy in the box undergoes

increasing oscillations superimposed on the growth. The magnetic energy spectrum, shown in

Fig. 2a, is flat up to k/k0 ∼ 4, above which it decreases with a very strong exponent, approxi-

mately as k−7.7. The flow energy spectrum (not shown here) is k−5 and steeper for k/k0 > 10.

Conclusions In magnetized high-Pm systems, such as galaxy clusters, the collisionless scales

are believed to be important for turbulent dynamo. However, at typical seed magnetic field levels

collisionless scales are unmagnetized, allowing Landau damping of magnetic perturbations to

impede the dynamo. The cutoff-scale of magnetic perturbations is then larger than the resistive

scale. Collisionless fluid models with appropriate closures can help explore this regime.
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