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The nanosecond electrical breakdown in liquid water requires a sharp electrode with a radius

of tens of micrometers and a voltage pulse having nanosecond rise-time and the magnitude

of tens or hundreds of kilovolts [1]. The two most probable driving mechanisms behind the

discharge onset are: the field-emission of electrons at the liquid or at metal-liquid interface

[2, 3] and the formation of low-density regions [4, 5] due to the electrostriction.

Recently, we proposed that electron multiplication proceeds via a bouncing-like motion of

electrons along the stretched cylindrical cavity, where the electrons are freely accelerated due

to the applied electric field [6]. This multiplication is sustained by the emission of the secondary

electrons from the surface of the cavity.

In this work, we investigate an elementary step of the multiplication process in long cavities,

which we define as a propagation of a primary electron released uniformly in the cavity in the

presence of the electric field. We derive the distribution function of the electron incidence on

the cylinder surface, and we reconstruct the function describing secondary electron yield due to

the primary electron impact.

Electron trajectory in a cylindrical cavity with homogeneous electric field is described using

spherical coordinates:

x = v0t sinθ cosφ , y = v0t sinθ sinφ , z = v0t cosθ +
qE
2me

t2, (1)

where v0 is the initial velocity of the electron, t is the time elapsed from the instant of electron

release and E is the applied electric field. Electron is released from the origin of the coordinate

system and vector of the initial velocity v0 is defined using two angles θ and φ , where θ ∈ (0,π)

and φ ∈ (−π

2 ,
π

2 ), see figure 1. Electron time of flight until hitting the cylinder surface is tfl =
2Rcosφ

v0 sinθ
and the z-coordinate of hitting point is:

z
R
= v0 cosθ

(tfl
R

)
+

q
2me

(E ·R)
(tfl

R

)2
= l cotθ +

Al2

2
(cot2 θ +1), (2)

where we modified the equation, setting A = qER
mev02 and l = 2cosφ .

Our goal is to obtain a non-trivial distribution of the electron incidence probability as a function
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Figure 1: Coordinate system used for the description of electron motion within the cylindrical

cavity. The motion is reduced only to the plane perpendicular to x− y plane, that includes~v0.

of φ and z/R. We suppose that the velocity of the released electron is uniformly distributed

on a hemisphere, which top is located in the x-axis direction. Using substitutions z
R = Z and

cotθ = ξ (Z) to the equation (2), we arrive to the quadratic equation:

Al2

2
ξ

2 + lξ +
Al2

2
−Z = 0. (3)

Its quadratic form implies that a point in the cylinder can be hit in two ways, first is the elec-

tron released with the z-velocity component along the electric field and the second against the

electric-field direction. The solution of the equation (3) is:

ξ± =− 1
Al
±

√
−1+

1+2AZ
(Al)2 , (4)

indicating that some regions, those with Z < (Al)2−1
2A , in the cylinder will not be hit at all.

It can be shown (transforming the condition for the uniform release 1
π

∫ π

2
0
∫

π

0 sinθdθdφ = 1) that

the distribution of electron incidence probability in the prefered variables (φ ; Z) is:

P(Z,φ) =

[
1

(1+ξ 2
+)

3
2
+

1

(1+ξ 2
−)

3
2

]
·
∣∣∣∣dξ

dZ

∣∣∣∣ , where
dξ±
dZ

=
±1

Al2
√
−1+ 1+2AZ

(Al)2

(5)

and ξ in P(Z,φ) being expressed as the function of Z. The new transformation also meets the

normalization condition; however, Z has to be varied within new limits, defined by the points of

the cylinder surface, which can be hit:

1
π

∫ π

2

0

∫
∞

Zmin

P(Z,φ)dZ dφ = 1, where Zmin(φ) =
(2Acosφ)2−1

2A
. (6)
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The distributions of electron incidence plotted for four different E ·R ∈ [10, 15, 20, 25] eV

and the initial energy of the electron ε0 =
1
2mev2

0 = 7.4 eV are shown in the figure 2. The shift

of the distribution towards the higher z/R with the increasing E ·R is observed. Note that the

electron is released from (φ = π

2 ; Z = 0).

Figure 2: The distributions of electron incidence probability plotted for E ·R = 10, 15, 20 and

25 eV. The green curve, given by Zmin(φ), denotes the limit boundary for possible electron

impact.

Whether the incident electron causes the emission of the secondary electrons depends on its

incident energy ε and the angle of incidence ψ . These two parameters are expressed as:

ε = ε0 +
z
R
(E ·R) and cosψ =

√
ε0

ε
sinθ cosφ . (7)

The set of (ε , ψ) values predicate the number of secondary electrons released back to the cavity,

and this number S(ε , ψ) is defined in the figure 12(a) of [6]. For positions in the cavity, where

z/R> Zmin(φ), the number of secondary electrons S(ε(z/R), ψ(z/R,φ)) is plotted in figure 3(a).

This is again done for E ·R∈ [10, 15, 20, 25] eV and ε0 = 7.4 eV. It is apparent that the threshold

(S(ε , ψ) = 1) ensuring electron gain is reached only for higher z/R, for example, z/R ∼ 8

for E ·R = 20 eV. However, such high values of z/R imply just a small incidence probability

(see figure 2). We conclude that there has to be very important influence of primary-electron

bouncing, which virtually enhances the gain of secondary electrons. Indeed, after summing the
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number of secondary electrons S(ε(z/R), ψ(z/R,φ)) with the probability of primary electron

bouncing P(ε(z/R), ψ(z/R,φ)) as shown in the figures 12(a) and 12(b) of [6], we obtain much

greater values for the total electron gain, see the figure 3(b). Moreover, the electron gain for

the E ·R = 20 eV reaches the threshold (S(ε , ψ) = 1) already at z/R ∼ 2, which is the distance

having high electron incidence probability.

Figure 3: (a) The number of secondary electrons released back to the cavity. (b) The total num-

ber of electrons released back to the cavity (including bouncing of the primary electron).

In conclusion, we showed that the bouncing of primary electron on the void-liquid interface is

important to maintain the electron multiplication for the investigated E ·R range. The results of

this work clarify important details behind the efficient process of electron multiplication in long

cavities. This contribution is funded by the Czech Science Foundation grant no. 18-04676S.
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