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Introduction

Fluctuations play a crucial role in heat and particle transport in magnetized plasmas. Recent
theoretical and experimental studies have suggested that multiscale interaction between small-
and large-scale fluctuations is an essential element for transport, especially for nonlocal
transport in magnetized plasma [1, 2]. Therefore, in order to elucidate mechanism of nonlocality
induced by such nonlinear interaction of fluctuations, a new diagnostic system is required to
observe the entire region of plasma with high spatial and temporal resolution. For this purpose,
we have developed tomography systems to observe a whole cross section of a linear cylindrical
plasma produced in a device named PANTA (Plasma Assembly for Nonlinear Turbulence
Analysis) [3]. Recently, three tomography systems have been installed in PANTA, and finally
developed to be able to observe three-dimensional (3D) structure of plasma emission and its
fluctuations [4].

Although we can obtain fluctuation data over the whole cross section of PANTA plasma by
using the tomography systems, a specialized analysis method is required for extracting useful
information from temporal series of three tomography systems. For example, we need a method
to transform 2D plasma profile, initially reconstructed on a cartesian coordinate, to a cylindrical
one for simple analyses. For this purpose, we have invented so-called Fourier-Rectangular
Function (FRF) analysis to express the cartesian tomography data on a cylindrical coordinate.
In this presentation, we introduce the 3D tomography measurement recently achieved in
PANTA and present the obtained results from the combination of the 3D tomography measure-

ment and the FRF analysis.
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systems of tomography are categorized to

two kinds; one is composed of four sets of Figure 1 Schematic view of PANTA al:ilC utu(r)nnvliisge;'aphy
light guide arrays placed on a vacuum Systems.
chamber, spaced by 45 degrees apart in the azimuthal direction (called TS-A), while the other
1s composed of six sets of light guide arrays placed by 30 degrees apart (TS-B) (see Fig. 1).
The light guide arrays of TS-A and TS-B comprise 32 and 21 stainless collimators, respectively,
which limit the viewing angle, spaced 5 mm
apart [5], [6]. The plasma images are recon-
structed on squared regions of 16 cm x 16 cm
and 10 cm x 10 cm in TS-A and TS-B, respec-
tively,as 11 x 11 grid image using the algorithm
of Maximum Likelihood-Expectation Maximi-
zation (MLEM) method [7], as shown in Figs
2(a) and 2(b). The fluctuation of local emission
can be observed with a sufficiently high signal-

to-noise ratio. Using these three tomography

systems, we have successfully observed 3D

structure of fluctuations in magnetized plasma as Figure 2 (a)(b) MLEM reconstuction images of

shown in Fig. 2(c). TS-A and TS-B, respectively. (¢) An example of
3D structure of fluctuation obtained by the
three tomography systems.

Fourier-Rectangular Function Analysis

The Fourier-Rectangular Function (FRF) expansion is developed to analyze the 2D image
data on a Cartesian coordinate as that on a cylindrical one. A two-dimensional image in cylin-
drical coordinates (r, 0) is expanded in a combined form of rectangular and sinusoidal function

series, ¢;(r,0),

Nr L

Nr M
e(r,0) =) a; :/(z) + Z Z R;(r) [al—c,m cosmB + a; , sin m@] = Z a,¢,(r,0),
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where R;(7) is a rectangular function. In the final reduction of above equation, the correspond-
ence of bases is that ¢,(r,0) = R, (r)/V2(l = i), ¢;(r,0) = R;(r) cosmb (I = 2N, (m —
1)+ N, +i,m>0),¢,(,0)=R;(r)sinmb (l=2N,(m—1)+ N, +i+1,m>0). Then,

the base functions satisfy the following quasiorthonormal relationships:

a 21
f f ¢i(r,0)p;(r,0)rdrdd = 5,
o Jo

where §; ; represents the Kronecker’s delta. Using the orthonormal relationship, one can obtain

the coefficient of each basis function, ag ,, ay, 1, A, p» as follows,

R;(r)
V2
ai, = [ &(r,0)R;(r) cosmb rdrd6,

ai,O = IE(T', 0)

rdrd0o,

a;, = [ &(r,0)R;(r) sinm6 rdrde.
Obtaining the time series data of these coefficients, a; o(t), a;,, (t), a;,,(t), analysis is per-
formed on the complex coefficient c(r;, m, t) = a;,,,(t) + vV—1a;,,(t) to obtain the feature of

the spatio-temporal structure of fluctuation.

Application of FRF Analysis and 3D Measurement

Figure 3 shows an example of the FRF @ . (k) 5 2Kz

analysis on a PANTA plasma under the fol- 107% r=1.8cm 3 g ot ,e“ \ %,
— signal = .

lowing operation condition: magnetic field

strength of 1300 G, filling Ar gas pressure

of 3 mTorr, and RF input power of 6 kW.

The power spectrum of local emission in-

tensity atr=1.8 cm (x = 1.8 cm, y = 0.0
cm) is shown, for example, in Fig. 3(a). In Figure 3 (a) A power spectrum of local emission in-
tensity at r = 1.8 cm. (b) and (c) Spatial structures of

this case, coherent fluctuations are ob- coherent modes of 2 kHz and 9 kHz, respectively.
served at 2 kHz, 7 kHz, 9 kHz and 11kHz. By calculating Fourier spectrum of the complex
coefficient of FRF ¢, (13, m, t), denoted as ¢,(r;, m, f), one can obtain the power spectrum as a
function of the azimuthal mode number and frequency, i.e., dispersion relationship, at each
radial location, P(r;,m, f) = |é,(r;, m, f)|?, where z means the axial position a tomography
system observes. Figure 4(a) shows the dispersion relationship, which indicates that the coher-

ent fluctuations at 2,7,9 and 11 kHz have azimuthal mode number of 1, 3,4 and 5, respectively.

The spatial structure of the coherent fluctuations are evaluated using the power P(r;, m, f) and
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the cross-phase to the reference radial location ( 7..f ), O(r,m,f) =

Arg[¢,(r;, m, f)C, (rref, m, f)], as follows,
&(r,0,m,f) = P(r;,m,f)cos(mf + 0(r;, m, f)),

where ¢, (r;, m, f) is the conjugate of ¢,(r;, m, f). The examples of the reconstructed structure
are shown for the modes of (m, f) = (1, 2 kHz) and (4, 9 kHz) in Figs. 3(b) and 3(c).
Also, the complex coefficients of the FRF expansion can be used to calculate the radial and

axial wavenumber. Taking the two-dimensional histogram of the following two values,
Arg[é,(ri,m, f) & (ri—1,m, f)] _ Arg[Criaz (um, ) (rym, f)]
Ar kez Az ’

one can obtain the kz - kr spectrum. Figure 4 (b) and 4(c) shows the kz — kr spectrum of m=1

ky =

and 4 modes, respectively. Since it is difficult to distinguish such a 3D structure for each fre-
quency with 1D measurement system or local imaging technique, for example, with reflectom-
etry, GPI and BES, the tomography systems should have the prominent feature to be able to
obtain dispersion relation and 3D wavenumber spectrum at every radial location using the FRF
analysis. The obtained 3D wavenumbers could contribute to investigate the fluctuations, such

as their driving mechanisms [9,10].
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Figure 4 (a) Azimuthal mode number-frequency spectrum at r = 4 cm. (b) and (c) The kz - kr spec-
trum of m=1 and m=4 mode, respectively.

To summarize, the combination of the whole cross section observation and the FRF analysis
gives us access to the advanced analysis on turbulence in magnetized plasmas.
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