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Introduction 

Fluctuations play a crucial role in heat and particle transport in magnetized plasmas. Recent 

theoretical and experimental studies have suggested that multiscale interaction between small- 

and large-scale fluctuations is an essential element for transport, especially for nonlocal 

transport in magnetized plasma [1, 2]. Therefore, in order to elucidate mechanism of nonlocality 

induced by such nonlinear interaction of fluctuations, a new diagnostic system is required to 

observe the entire region of plasma with high spatial and temporal resolution. For this purpose, 

we have developed tomography systems to observe a whole cross section of a linear cylindrical 

plasma produced in a device named PANTA (Plasma Assembly for Nonlinear Turbulence 

Analysis) [3]. Recently, three tomography systems have been installed in PANTA, and finally 

developed to be able to observe three-dimensional (3D) structure of plasma emission and its 

fluctuations [4]. 

Although we can obtain fluctuation data over the whole cross section of PANTA plasma by 

using the tomography systems, a specialized analysis method is required for extracting useful 

information from temporal series of three tomography systems.  For example, we need a method 

to transform 2D plasma profile, initially reconstructed on a cartesian coordinate, to a cylindrical 

one for simple analyses. For this purpose, we have invented so-called Fourier-Rectangular 

Function (FRF) analysis to express the cartesian tomography data on a cylindrical coordinate. 

In this presentation, we introduce the 3D tomography measurement recently achieved in 

PANTA and present the obtained results from the combination of the 3D tomography measure-

ment and the FRF analysis. 

 

47th EPS Conference on Plasma Physics O3.402



Three tomography systems 

The PANTA device in which the to-

mography systems are installed can pro-

duce cylindrical-shaped magnetized Ar 

plasmas with 4.0 m in length and 10 cm in 

diameter using 7 MHz RF[3]. The three 

systems of tomography are categorized to 

two kinds; one is composed of four sets of 

light guide arrays placed on a vacuum 

chamber, spaced by 45 degrees apart in the azimuthal direction (called TS-A), while the other 

is composed of six sets of light guide arrays placed by 30 degrees apart  (TS-B) (see Fig. 1). 

The light guide arrays of TS-A and TS-B comprise 32 and 21 stainless collimators, respectively, 

which limit the viewing angle, spaced 5 mm 

apart [5], [6]. The plasma images are recon-

structed on squared regions of 16 cm x 16 cm 

and 10 cm × 10 cm in TS-A and TS-B, respec-

tively, as 11 x 11 grid image using the algorithm 

of  Maximum Likelihood-Expectation Maximi-

zation (MLEM) method [7], as shown in Figs 

2(a) and 2(b). The fluctuation of local emission 

can be observed with a sufficiently high signal-

to-noise ratio. Using these three tomography 

systems, we have successfully observed 3D 

structure of fluctuations in magnetized plasma as 

shown in Fig. 2(c). 

 

Fourier-Rectangular Function Analysis 

The Fourier-Rectangular Function (FRF) expansion is developed to analyze the 2D image 

data on a Cartesian coordinate as that on a cylindrical one. A two-dimensional image in cylin-

drical coordinates (r, θ) is expanded in a combined form of rectangular and sinusoidal function 

series,  !!(#, %), 
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Figure 1 Schematic view of PANTA and tomography 
systems. 

Figure 2 (a)(b) MLEM reconstuction images of 
TS-A and TS-B, respectively. (c) An example of 
3D structure of fluctuation obtained by the 
three tomography systems. 
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where +!(#) is a rectangular function. In the final reduction of above equation, the correspond-

ence of bases is that !,(#, %) = +.(#)/√2(8 = 9),  !,(#, %) = +!(#) cos3%	(8 = 2;%(3 −

1) + ;% + 9,3 > 0), !,(#, %) = +!(#) sin3%	(8 = 2;%(3 − 1) + ;% + 9 + 1,3 > 0). Then, 

the base functions satisfy the following quasiorthonormal relationships: 

@ @ !!(#, %)!/(#, %)#A#A% = 	B!,/
01

#

2

#
, 

where B!,/ represents the Kronecker’s delta. Using the orthonormal relationship, one can obtain 

the coefficient of each basis function, *#,., *(,.) , *(,.* , as follows, 

*!,# = ∫ '(#, %)
+!(#)
√2

#A#A%,	

*!,() = ∫ '(#, %)+!(#) cos3% #A#A%,	

*!,(* = ∫ '(#, %)+!(#) sin3% #A#A%. 

Obtaining the time series data of these coefficients, *!,#(E), *!,() (E), *!,(* (E), analysis is per-

formed on the complex coefficient F(#! , 3, E) = *!,() (E) + √−1*!,(* (E)	to obtain the feature of 

the spatio-temporal structure of fluctuation. 

 

Application of FRF Analysis and 3D Measurement 

Figure 3 shows an example of the FRF 

analysis on a PANTA plasma under the fol-

lowing operation condition: magnetic field 

strength of 1300 G, filling Ar gas pressure 

of 3 mTorr, and RF input power of 6 kW. 

The power spectrum of local emission in-

tensity at r = 1.8 cm (x = 1.8 cm, y = 0.0 

cm) is shown, for example, in Fig. 3(a). In 

this case, coherent fluctuations are ob-

served at 2 kHz, 7 kHz, 9 kHz and 11kHz. By calculating Fourier spectrum of the complex 

coefficient of FRF F3(#! , 3, E), denoted as F̂3(#! , 3, H), one can obtain the power spectrum as a 

function of the azimuthal mode number and frequency, i.e., dispersion relationship,  at each 

radial location, I(#! , 3, H) = |F̂3(#! , 3, H)|0, where z means the axial position a tomography 

system observes. Figure 4(a) shows the dispersion relationship, which indicates that the coher-

ent fluctuations at 2, 7, 9 and 11 kHz have azimuthal mode number of 1, 3, 4 and 5, respectively. 

The spatial structure of the coherent fluctuations are evaluated using the power I(#! , 3, H) and 

Figure 3 (a) A power spectrum of local emission in-
tensity at r = 1.8 cm. (b) and (c) Spatial structures of 
coherent modes of 2 kHz and 9 kHz, respectively. 
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the cross-phase to the reference radial location ( 	#%45 ),  Θ(#! , 3, H) =

	Arg[F̂3(#! , 3, H)F̂3∗P#%45 , 3, HQ], as follows, 

'(̅#, %,3, H) = TI(#! , 3, H) cos(3% + Θ(#! , 3, H)),	 

where F̂3∗(#! , 3, H) is the conjugate of F̂3(#! , 3, H). The examples of the reconstructed structure 

are shown for the modes of (m, f) = (1, 2 kHz) and (4, 9 kHz) in Figs. 3(b) and 3(c).  

Also, the complex coefficients of the FRF expansion can be used to calculate the radial and 

axial wavenumber. Taking the two-dimensional histogram of the following two values, 

U% =
Arg[F̂3(#! , 3, H)	F̂3∗(#!7', 3, H)]

Δ# , U3 =
Arg[F̂3893	(#! , 3, H)F̂3∗(#! , 3, H)]

ΔW , 

one can obtain the kz - kr spectrum.  Figure 4 (b) and 4(c) shows the kz – kr spectrum of m=1 

and 4 modes, respectively. Since it is difficult to distinguish such a 3D structure for each fre-

quency with 1D measurement system or local imaging technique, for example, with reflectom-

etry, GPI and BES,  the tomography systems should have the prominent feature to be able to 

obtain  dispersion relation and 3D wavenumber spectrum at every radial location using the FRF 

analysis. The obtained 3D wavenumbers could contribute to investigate the fluctuations, such 

as their driving mechanisms [9,10].  

To summarize, the combination of the whole cross section observation and the FRF analysis 

gives us access to the advanced analysis on turbulence in magnetized plasmas. 
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Figure 4 (a) Azimuthal mode number-frequency spectrum at r = 4 cm. (b) and (c) The kz - kr spec-
trum of m=1 and m=4 mode, respectively. 
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