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Introduction

It is thought that relativistic collisionless shocks have a major role in producing the high-

energy tail of the cosmic ray spectrum. However, the microphysical details of ion Fermi ac-

celeration and the long-time behaviour of such relativistic collisionless shocks are still not yet

fully understood [1]. Understanding how particles get accelerated and connecting their acceler-

ation with the cosmic radiation measured on Earth is a topic of high interest and a long-lasting

mystery in Astrophysics. Both in laboratory Astrophysics experiments or in Plasma kinetic

Particle-In-Cell (PIC) simulations, the generation of these shocks is reproduced and studied by

the interaction, mediated by collisionless instabilities, of two counter-propagating and collision-

less plasma flows [2]. In the particular case of exactly symmetric and cold plasma slabs collision

moving with a Lorentz factor γ0 >
√

3/2, the dominating instability is the purely electromag-

netic Weibel instability [3]. However, the most extensive PIC simulations using this approach

to date can follow the plasma dynamics for time intervals not long enough to fully capture the

proton acceleration efficiency, the magnetization level and the coherence length scale evolution

in the resulting shock structure. It seems in addition that all latter physical processes increase

with time in the simulations. We introduce here a novel PIC simulation setup that relaxes the

PIC simulation constraints. It consists in simulating with a moving window the collision of

the two symmetric electron-proton plasma slabs in the backward-propagating electron-proton

plasma Slab Rest Frame (SRF). We will note throughout the paper, n0, T0, γ0 and±v0 the initial

densities, temperatures, Lorentz factors and velocities of the two symmetric plasma slabs as

seen in the Center of Mass Frame (CMF), ns (nr), Ts (Tr), γs (γr) and vs (vr) the initial density,

temperature, Lorentz factor and velocity of the streaming plasma slab (respectively the plasma

slab initially at rest) as seen in the SRF and ρshock (ρ±shock), γshock (γ±shock) and vshock (v±shock)

the density, Lorentz factor and velocities of the two shocks as seen in the CMF (respectively

in the SRF). Thanks to the moving window that follows the front shock structure, our simu-

lation setup allows for observing the shock propagation on unprecedented time scales. As a

proof-of-principle, we show in this conference 2D PIC simulation results that are performed
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Space contraction and time dilation

∆x = ∆x0 ∆y = ∆y0 ∆z = γ0∆z0 ∆t = ∆t0/γ0

Streaming plasma slab properties

γs = 2γ0
2−1 vs =

2γ0
2

γs
v0 ns =

γs

γ0
n0 Ts =

γ0

γs
T0

Immobile plasma slab properties

γr = 1 vr = 0 nr =
n0

γ0
Tr = γ0T0

Relativistic collisionless shocks properties

v±shock =
v0±vshock

1± vshockv0

c2

n±shock = γ0nshock

(
1± vshockv0

c2

)
Table 1: Space-time contraction/dilation, plasma flows and shock hydrodynamic moments.

with the highly parallelized code PIC OSIRIS [4]. Table (1) summarizes the space-time con-

traction/dilation, the plasma flow densities, velocities and temperatures as well as the shock

velocities and densities as seen in the SRF.

Theory and PIC Simulation

The number of plasma (macro-)particles is necessarily finite in a (PIC-simulated) plasma.

Consequently, there is necessarily statistical fluctuations between the exact 3D-3V phase-space

densities of (macro-)particles and their distribution function. As a result, instabilities, that are

seeded by natural statistical fluctuations, develop at the available spatial frequency k for which

the instability growth rate is maximum. Assuming equilibrium distribution functions 〈 fsa〉 =

nsδ
3 [psa− γsmavs] and 〈 fra〉 = nrδ

3 [pra] for respectively the streaming electrons (a = e) and

protons (a= p) and the ones initially at rest and linearizing the Maxwell equations self-consistently

coupled to the Klimontovich equations for each species in the small perturbation parameter

1/γs, one finds by neglecting collisions in the cold approximation the following dispersion re-

lation for these linearly growing plasma fluctuations[
ω

2− k2−
(

1+µ +
a
γs

)][
1− 1+µ

ω2 −
a

γs3
1(

ω−βskz
)2

]
=− a

γs

(1+µ)βs
2k⊥

2

ω2
(
ω−βskz

)2 . (1)

It is similar to the one found by [5] concerning the electromagnetic oblique instability of a

relativistic electron beam propagating in a denser plasma when neglecting the magnetic field

generated by the former. Here, ω = ω/ωpr and k = kωpr/c are normalized to the rest plasma

frequency ωpr = ωp0/
√

γ0 = ωps/
√

γs with ωp0 =
√

4πn0e2/me, βs = vs/c and a = (ns/nr)(1+

µ) ≈ γs. In the limit µ = me/mp→ 0 and γs� 1, the oscillations building up with the largest

growth rate are those whose frequency is close to the rest plasma frequency. Retaining conse-
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quently only the term depending on the wave vector in first bracket of Eq. (1), imposing ω2 = 1

in the denominator of the right hand side term and assuming k 6= 0, one finds the dispersion rela-

tion 1−1/ω2−ε/
(
ω− kzβs

)2
= 0 where ε = (a/γs)[(1/γs

2)(kz
2/k2)+(k⊥2/k2)]. Similarly as

for the two-stream instability, this oblique instability occurs whenever kzvs < ωp,r[1+ ε1/3]
3/2

.

For a fixed wave vector component perpendicular to the streaming propagation direction k⊥, the

growth rate progressively increases with increasing kz from δ OI (kz = 0, k⊥) until reaching its

maximum value

δ
MFI = δ

OI
max (k⊥) = ωp,r

√
3

2

(
ε

2

)1/3
(2)

when electrostatic waves propagates along the streaming propagation direction in phase with

the streaming plasma kz = ωp,r/vs. Then, it abruptly decreases to zero. This oblique instability

is mainly electrostatic : the electric field component transverse to the wave vector is small

compared with the longitudinal one in a ratio k⊥kzδ
OI (k)/k2ωp,r.

To illustrate our results, we present a PIC simulation considering γ0 = 2.12132 and kBT0 =

10−4mec2 up to Lt = 11500/ωp,s corresponding to Lt0 = γ0Lt = 12562/ωp,0 in the CMF. The

2D-3V phase-spaces (z, x, pz, px, py) is sampled by Nmpcs = γsNmpcr = 32 macro-particles per

cell in such a way that all macro-particles have the same statistical weight. The time unit is

fixed to ωref = ωp,s such that the normalized densities are nr = nr/ns = 1/γs and ns = 1 in

simulation units. The cells are squared with a size ∆z×∆x = (∆ωref/c)2 = 0.052 for a simula-

tion box Lz×Lx = (Lzωref/c)× (Lxωref/c) = 2000× 250 leading to a total of Np = 72NzNx =

1.441010 macro-particles and Nz×Nx = 40000× 5000 grid points. The simulation time step

∆t = ωref∆t = 0.98∆/
√

2 = 3.46410−2 respects the CFL stability/numerical heating condition

∆t ≤ ∆/c < ∆/vTr,e < ∆/vTs,e < 1/ωps < 1/ωpr where vTr,e and vTs,e are the thermal veloci-

ties of electrons initially at rest and streaming electrons, respectively. Leading to a total of

Nt = Lt/∆t = 331987 PIC loop iterations, the empirical computational cost of such a simulation

is about C ≈ 500,000 CPU×hours and ≈ 400 GB of RAM memory with full OpenMP, MPI

and AVX vectorization parallelization levels. We found good agreements between the theory

and the PIC simulation concerning the growth rate of this almost purely Magnetostatic Fila-

mentation Instability (MFI) by imposing kz ≈ ωpr/vs and k⊥ ≈ ωp0/c
√

γ0 in Eq. (1) leading to

δ MFI ≈ 0.06/ωps. The shock formation time is about the inverse of streaming protons cyclotron

frequency τ f = γsmpc/eδBsat ≈ 1469/ωps where δBsat ≈ 10meωpsc/e is the magnetic field at

the MFI saturation time τs. Similarly as done by [6] for electron-positron colliding slabs in the

CMF, one can estimate the latter according to τs≈ ln
(

δBsat
2/δBflu

2
)
/2δ MFI ≈ 106/ωps where

δBflu ≈ 0.9meωpsc/e is the initial magnetic fluctuations amplitude level at t ≈ 10/ωps . Finally,

in agreement with the Lorentz transforms from the CMF to the SRF gathered in Table 1, with
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the density jump condition nshock/n0 =
(
Γd + γ

−1
0
)
/(Γd−1) ≈ 3.94 and with the shock ve-

locity vshock = (Γd−1)
√
(γ0−1)/(γ0 +1)≈ 0.30c as seen in the CMF with the 2D adiabatic

index Γd = 3/2, we obtain n+shock ≈ 22.4nr ≈ 2.80ns and v+shock ≈ 0.93c as seen in the SRF.

Conclusion

Assuming a computer architecture allowing for η =1.2 double-floating-point instructions per

ns as well as a time complexity of 73Np, 113Np, 445Np, 35NzNx and 135Np double-floating-

point instructions per PIC loop iteration for respectively the quadratic macro-particle Boris

pusher, charge deposit, Esirkepov charge-conserving, Fei Maxwell solver [7] and fields inter-

polation numerical schemes that we haved used, we deduce a computational cost C ≈ ηNzNxNt[
35+1532

(
Nmpcs +Nmpcr

)]
≈ 1,200,000 CPU×hours. Performing the same analytical esti-

mate for the cost C0 of the equivalent simulation performed in the CMF with spatial cells size

∆z0 ×∆x0 = ∆/γ0×∆, time step ∆t0 . ∆z0 , time duration Lt0 = γ0Lt , box Lz0 ×Lx0 ≈ cLt0 ×Lx

and using the same number of macroparticles per cell for simplicity, our simulation setup leads

to a computational cost reduction of C/C0 ≈ Lz/γ0
4cLt . However, the simulation box size along

the propagation axis should be chosen sufficiently large in the SRF such as Lz > cτ f for cap-

turing the shock front at the shock formation time τ f and the moving window velocity should

be the closest as possible to the shock front velocity v+shock. As a conclusion, by noting τ f0 the

shock formation time as seen in the CMF, our simulation setup allows for a computational cost

reduction of C/C0 ≈ τ f0/γ0
4Lt0 thanks to the use of the moving window technique coupled with

the time dilation effects in the SRF.
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