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Introduction It was shown that a microwave beam can be significantly scattered by plasma edge

turbulence in a fusion machine [1-2]. This effect can deteriorate the neoclassical tearing modes

stabilization efficiency [3], it may also result in widening of spatial resolution and complexity

of data interpretation for the microwave plasma diagnostics. In this work we focus on one of

the microwave diagnostics - the collective Thomson scattering (CTS) description with respect

to the presence of the plasma turbulence. A simplified analytical model of the CTS is developed

and the numerical simulation is done in order to justify prediction of the model.

X-mode beam broadening in turbulent plasma. Analytical description Here we describe

an X-mode microwave beam propagation in turbulent magnetized plasma. We assume a slab

geometry which is normally good enough for characterizing microwave beams propagation.

The Cartesian coordinates are chosen as follows: x is the direction of plasma inhomogeneity, a

probing beam is launched along this axis; z axis corresponds to lines of external magnetic field

B; y axis is perpendicular to the x and z and coincides with polarization of X-mode in vacuum.

The wave equation in this geometry can be written as[
∂ 2

∂x2 +
∂ 2

∂y2 + k2 (x)+δk2 (x,y)
]

Ey = 0 (1)

where the X-mode wave number k2 = ω2

c2
ε2−g2

ε
, components of the permittivity tensor in the

"cold plasma" approximation ε = 1− ω2
pe

ω2−ω2
ce

and g = ωce
ω

ω2
pe

ω2−ω2
ce

, ω - probing frequency, ωpe

- plasma frequency, ωce - electron cyclotron frequency, perturbation of the wave number due

to the turbulence δk2 =−ω2
pe

c2
(ω2−ω2

ce)(ω2−2ω2
pe)+ω4

pe

(ω2−ω2
ce−ω2

pe)
2

δn
n , n - background plasma density and δn

- the density turbulence. The launched probing beam is Gaussian Ey(x = 0,y) = E0e−
y2

δ2 . The

equation (1) can be analysed applying the geometrical optics approach and the perturbation

theory. The solution of (1) is

Ey (x,y) = E0
√

πδ

√
ω

ck (x)

∫ +∞

−∞

dky

2π
e−

k2
y δ2

4 eikyyei
∫ x

0 dx′k(x′)−i
k2
y d2(x)

2 +iδφ (2)
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where the random phase δφ =−
∫ x

0 dx′ 1
k(x′)

ω2
pe

2c2
(ω2−ω2

ce)(ω2−2ω2
pe)+ω4

pe

(ω2−ω2
ce−ω2

pe)
2

δn(x′,y′(x,y,x′,ky))
n(x′) and d2(x)=∫ x

0 dx′ 1
k(x′) . The phase perturbation adds up along the wave trajectory which is described by the

geometrical optics y′(x,y,x′,ky) = y− kyl2(x′,x), here l2(x′,x) =
∫ x

x′ ds 1
k(s) . Assuming strong

phase modulation regime
〈
δφ 2 (x,y,ky)

〉
� 1 one can derive the average intensity by means of

averaging E2
y in (2)

〈
E2

y (x,y)
〉
= E2 ω

ck (x)
δ√

2W (x)
e
− y2

W2(x) (3)

the average beam width is specified as W 2 (x) = δ 2

2 + 2d4(x)
δ 2 +4

∫ x dx′D(x′)l4(x,x′) where

D(x) =
1
8

1
k2(x)

ω4
pe

c4

[(
ω2−ω2

ce
)(

ω2−2ω2
pe
)
+ω4

pe
]2(

ω2−ω2
ce−ω2

pe
)4

〈
δn2(X)

〉
n2 (X)

∫ dqy

2π

∣∣n0,qy

∣∣2 q2
y (4)

the definition for the introduced local relative turbulence amplitude

√
〈δn2(x)〉

n(x) and the turbulence

spectrum
∣∣nqx,qy

∣∣2 is
〈

δn(X ,Y )
n(X)

δn(X+∆x,Y+∆y)
n(X+∆x)

〉
=
〈δn2(X)〉

n2(X)

∫ dqxdqy
4π2

∣∣nqx,qy

∣∣2 ei∆xqx+i∆yqy . We refer

the readers to [4] for the detailed derivation.

CTS description in turbulent plasma We apply the reciprocity theorem for calculation the

scattered off the core fluctuations signal

Es =
Es

unit
4

∫
dr

E++E+∗

2
jnl (5)

where Es is the scattered off the core fluctuations field, Es
unit is the received filed normal-

ized to unit energy flux, E+ is the receiver antenna radiation normalized to unit power, jnl =

σ
E f l+E∗f l

2
Ep+E∗p

2 is the nonlinear current resulted from interaction of the probing Ep and core fluc-

tuations E f l radiation, σ is the quadratic conductivity. The space distribution of the radiation Ep

and E+ is described by (2), but one should keep in mind that the equation (2) described Ep and

E+ in different frames of reference. So far as the three radiation amplitudes in (5)
(
Ep,E f l,E+

)
come to the intersection domain from different areas of a fusion machine, they are statistically

independent. Then the average power of the received signal

〈Ps〉= |σ |
2

64

∫ ∫
drdr′

〈
Ep (r)Ep

(
r′
)〉〈

E f l (r)E f l
(
r′
)〉〈

E+ (r)E+
(
r′
)〉

(6)

We consider the core fluctuations model as the sum E f l =

√〈
E2

f l

〉
∑ jl S f lei∆k jx+i∆klyeiϕ j,l with

a spectrum S f l and random phases ϕ j,l , ∆k is the wave number step. The correlator in (6) gives
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〈
E f l (r)E f l (r′)

〉
=
〈

E2
f l

〉
∑ jl
∣∣S f l
∣∣2 ei∆k j(x−x′)+i∆kl(y−y′). Since E+

p ∝ ei
∫

drk+
p the main contribu-

tion to the registered power comes from the resonance harmonic k f l =−kp−k+. Therefore the

expression (6) can be written as

〈Ps〉= |σ |
2

64

〈
E2

f l

〉∣∣S f l
(
k f l
)∣∣2 ∫ ∫ drdr′eik f l(r−r′) 〈Ep (r)Ep

(
r′
)〉〈

E+ (r)E+
(
r′
)〉

(7)

We will consider a simplified scattering model for the further analysis. The first assumption is

that the plasma density and magnetic field profiles are considered as constant in the area of scat-

tering, the second one is that we neglect the probing Ep and receiver E+ radiation diffraction

on the scale of the scattering area. The scattering angle - α . In the framework of the simpli-

fied model we substitute E+
p (which are described by (2) with respect to different frames of

reference) into (7) and calculate 8 integrals. Finally the obtained expression

〈Ps〉= |σ |
2

π2

32

∣∣S f l
(
k f l
)∣∣2〈E2

f l

〉
E2

0pE+2
0

ω2

c2k2(x∗)
δpδ+

sin2
α

√
σ2

pσ+2
(8)

x∗ - point of the two beams
(
E+

p
)

axes intersection. The functions σ+2
p = 2

δ
+2
p

+ 4
∫

l+p
dx′D(x′)

have the meaning of an angular beam broadening due to the turbulence, l+p is trajectory of the

beams axes. It is seen from the equation (8) that presence of the edge turbulence reduces the

registered signal amplitude. The relative expression

R =
〈Ps〉

∣∣∣
turb6=0

〈Ps〉
∣∣∣
turb=0

=
1√(

1+2δ 2
p
∫

lp
dx′D(x′)

)(
1+2δ+2

∫
l+ dx′D(x′)

) (9)

allows to estimate the signal reduction rate.

Numerical simulation of the CTS in turbulent plasma To estimate the signal reduction in a

CTS experiment due to the plasma turbulence and to verify the analytical model we demonstrate

the results of the CTS simulations under the conditions of a simplified model described in the

previous section. Plasma parameters are chosen similar for the parameters expected on ITER,

the probing frequency f = 60 GHz also corresponds to the chosen frequency in the CTS exper-

iment for ITER. Magnetic field B = 4.25 T is a constant in the domain of simulation, the 1D

density profile n(x) and the 1D turbulence envelope
√
〈δn2(x)〉 are shown on the figure 1. The

1D turbulence is generated as δn(x) =
√
〈δn2(x)〉

√
∆qlc
2π ∑ j e−

l2c ∆q2 j2
4 ei∆q jxeiϕ j , where ϕ j - ran-

dom phase, ∆q - step of the wave number discretisation, lc = 1.5 cm - the correlation length. The

model core collective fluctuations δ ñ are represented by just one mode which provide scattering
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at angle α = π/2. The relative amplitude δ ñ
nmax

=
0.0003. The 2D profiles are constructed as 2D mesh
n(x)×n(y), δn(x)×δn(y). The simulation scheme
is illustrated on the figure 2: the turbulence map
δn+ 100δ ñ (the factor 100 is used in order to see
the core fluctuations) and evolution of the average
probing beam width. The receiver antenna position
is on the right hand side of the figure 2 at poloidal
coordinate yr = 45 cm, according to the analytical
prediction the received signal is independent on the
receiver radial coordinate. The registered field Ereg

is determined as a product of the scatted field Es ra-
dial distribution with the receiver radiation diagram

Ereg (x) = Es (x,yr) 1√
πδ+ e−

x2

δ+2 .
To estimate the registered power reduction we
calculate (9) for the specified plasma param-
eters, that amounts to R ≈ 0.11. The numer-
ical evaluation of the reduction rate Rnum =∫

dxEreg2
∣∣
turb6=0

/∫
dxEreg2

∣∣
turb=0 gives the value

Rnum ≈ 0.15 for different radial positions of the re-
ceiver as it was expected from the analytical analy-
sis. The signal decrease in turbulent plasma amounts
to nearly 90%. The numerical simulation is in good
agreement with the analytical prediction.

Figure 1: The density and turbulence enve-
lope profiles

Figure 2: Scheme of the simulation: 2D do-
main region with an overlaid turbulence map
δn+100δ ñ. The red lines are evolution of the
average probing beam width with respect to
the plasma turbulence.

Conclusion In this work it was demonstrated that presence of the edge turbulence can signifi-

cantly disturb an X-mode microwave beam. The provided analytical and numerical analysis of

the reduction the registered signal in a CTS experiment revealed that this value is sensitive to

the turbulence properties (9). An estimate of this value was obtained for plasma conditions and

probing frequency relevant for a planned CTS experiment on ITER. Mitigation of the registered

power is up to 90%, it may be crucial to take this effect into account since the scattered radiation

level is usually extremely low, of the order of noise rate.
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