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It needs to operate tokamak plasmas within the window of interest for detailed physics studies.
The operation scenarios are frequently characterized by the specific window of several 0D
global parameters such as Bn (or Bp), qos, qo or i [1,2]. Those 0D parameters represent the
plasma pressure, the magnetic field structure and the current profile which can provide the
information of the confinement and stability of the fusion plasma. Attempts to control the
global or local plasma parameters have been widely conducted by using PID algorithm in the
experiment [3-5] and in the real-time predictive modelling [6]. The performance control by
stabilizing the MHD instabilities such as NTMs have been also developed [7,8]. However,
controlling multiple parameters simultaneously with machine learning has not been carried out
much [9,10]. In this work, we introduce an algorithm to control multiple 0D parameters (Bn, qos,
and l;) simultaneously into the arbitrary target regime using deep reinforcement learning (RL)
technique [11]. First, we construct a data-driven simulator as a virtual KSTAR tokamak
environment. Then, we trained the RL-based controller that manipulates the external actuator
variables to match the 0D plasma parameters with the given target regime.

In tokamak plasmas, global plasma responses are determined by combination of internal
physical phenomena such as turbulent transport, heating & current drive, and MHD stability.
These physical properties can be predicted by self-consistent simulations with a integrated
modelling suite [12]. It provides multi-dimensional kinetic profiles which are crucial for
detailed physics studies, but it is computationally heavy to be used for tons of virtual
experiments required for RL agent training. Therefore, in this work, an LSTM-based [13]
data-driven simulator shown in Figure 1 that imitates the KSTAR plasma responses is used for
the virtual experimental environment instead, which is introduced and validated in the

precedent research [10].
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Figure 1. LSTM-based data-driven simulator as a virtual tokamak environment introduced in [10].
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In the predict-first tokamak scenario development [14], the predictive simulation is conducted
with manually seeking the optimal operation control to achieve the target performance with lots
of trials and errors. However, it is hard to find the multi-dimensional control solution to match
multiple 0D parameters with arbitrary targets simultaneously. Therefore, we introduced an RL
artificial decision-making agent, the TD3 algorithm [15], which is suitable for multi-input and
multi-output control. The RL agent observes the current plasma state (Bn, qos, and I;) and sets
the target state (BN _target, 495 target, and i target), then it determines the action composed of actuator
controls to match the consequent plasma state into the target regime. During the RL agent’s
training in the virtual tokamak shown in Figure 1, it receives the reward according to how close
the consequent plasma state is to the given target each episode, so it is gradually trained to

provide optimal decision-making that yields the highest reward at given states.
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Figure 2. (a) Schematic view of the RL training in the virtual tokamak. (b) Modelling of the actuator
controls and reward evaluation in each training episode. (c) The received reward versus training episode.

In each training episode, the RL agent delivers the actuator controls; plasma current (Ip), NB
powers (Png-a,c), and plasma shape (Rgeo, @min, X, 0y and o). Then, in the simulator, the
actuator variables evolve to the RL-determined values for 1 s, while the NB powers change
immediately as shown in Figure 2 (b). After 1 s of relaxation from the end of the control phase,
the reward is evaluated at the final state. The final state is then loaded as the initial condition of
the next episode and the target values are updated randomly. Here, other operation conditions
such as toroidal field and Greenwald density fraction are fixed with those in shot #26719 in
KSTAR. The detailed descriptions of the state, action, and reward for the RL training are

presented below.

State = (BN, q9s, li, BN_target, (95 _target, liitarget) (1)
Action = (Ip, Pxg-a, Pxg-B, PNB-c, Rgeo, amin, K, du, O1) (2)
Reward = —rms[(y-Ytarget)/€y] y=pN,q95,1i With €y, = 0.1, 0.4, 0.04 for y = PN, qos, i €)

After a few 10° of training episodes, the average reward the RL agent receives becomes

saturated as shown in Figure 2 (c) and it provides nearly optimal decision-making for each
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given target regime. Then, we tried to apply it to find the optimal actuator control for several
operation regimes in KSTAR. We set three target regimes; (i) normal H-mode (Bn= 2.0, qos=
5.0, 1;=0.95), (i1) hybrid regime (2.5, 4.0, 0.85) and (iii) high-l; regime (2.5, 6.0, 1.05).
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Figure 3. (a) 3D trajectory of plasma responses in parametric space (Bn, qss, and I;) by RL controls for three
targets. (b) The RL control solutions (Ip, Pxp-aB,c, and shape) for three different target regimes. (c)
Time-evolution of the control variables and the consequent plasma responses.

Figure 3 shows the results of the RL controls for achievement of three different target regimes
and consequent plasma responses in the virtual KSTAR environment. The RL agent determines
different Ip, combination of NBs, and plasma boundary shape to achieve each target regime as
shown in Figure 3 (b). It is noteworthy that since the heating & current drive profiles differ
according to the combination of NBs due to their different geometries, and the plasma current
and boundary shape also strongly affect the plasma, it is hard to manually figure out the optimal
controls from the nonlinearly entangled physical interactions that determine the plasma states.
However, we can see that the RL agent could control the multiple plasma state parameters into
the given target values simultaneously by manipulating nine control knobs in Equation (2).
Interestingly, when we set hybrid regime targets (Target 2 in Figure 3), the RL agent
determines relatively higher off-axis tangential beam power which yields higher NBCD
efficiency. It is related to the broadening of the current density profile that induces hybrid-like q

profile at the favourable plasma current and shape condition. Even though the target Bn’s are
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identical in Target 2 and 3, the plasma current, NBs’ combination, and boundary shape are
different. In the high-l; target case (Target 3), it determines a lower off-axis tangential beam
power contrary to the hybrid regime so to have higher I; with a more peaked current profile,
while the total NB power in both cases is almost the same each other. Furthermore, it tries “fat”
shape of the plasma boundary with a large minor radius, low elongation, and high triangularity
for high-1; as shown in Figure 3 (b). The reason is under analysis but the similar l; dependencies
on amin and Kk were reported in [16,17].

It is notable that the plasma responses by RL control are not converging directly into the
target, rather showing delayed response in the relaxing phase in Figure 3 (a) and (c). Especially
li evolves slowly in the resistive time-scale of ~1 s and P is also affected by 1. The RL control
solution reflects the time-dependent delayed response and it makes the plasma states detour to
reach the target point in the 3D trajectory, which the simple PID control can hardly perform.
The RL-based control algorithm introduced in this work can be the first step for developing the

autonomous operation of future tokamak reactor.
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